Introduction: Cognitive Orientation to daily Occupational Performance (CO-OP) is a cognitive-based, task-specific intervention recommended for children with developmental coordination disorder (DCD). We recently showed structural and functional brain changes after CO-OP, including increased cerebellar grey matter. This study aimed to determine whether CO-OP intervention induced changes in cortical grey matter volume in children with DCD, and if these changes were associated with improvements in motor performance and movement quality.

Methods: This study is part of a randomized waitlist-control trial (ClinicalTrials.gov ID: NCT02597751). Children with DCD ( = 78) were randomized to either a treatment or waitlist group and underwent three MRIs over 6 months. The treatment group received intervention (once weekly for 10 weeks) between the first and second scan; the waitlist group received intervention between the second and third scan. Cortical grey matter volume was measured using voxel-based morphometry (VBM). Behavioral outcome measures included the Performance Quality Rating Scale (PQRS) and Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2). Of the 78 children, 58 were excluded (mostly due to insufficient data quality), leaving a final  = 20 for analyses. Due to the small sample size, we combined both groups to examine treatment effects. Cortical grey matter volume differences were assessed using a repeated measures ANOVA, controlling for total intracranial volume. Regression analyses examined the relationship of grey matter volume changes to BOT-2 (motor performance) and PQRS (movement quality).

Results: After CO-OP, children had significantly decreased grey matter in the right superior frontal gyrus and middle/posterior cingulate gyri. We found no significant associations of grey matter volume changes with PQRS or BOT-2 scores.

Conclusion: Decreased cortical grey matter volume generally reflects greater brain maturity. Decreases in grey matter volume after CO-OP intervention were in regions associated with self-regulation and motor control, consistent with our other studies. Decreased grey matter volume may be due to focal increases in synaptic pruning, perhaps as a result of strengthening networks in the brain via the repeated learning and actions in therapy. Findings from this study add to the growing body of literature demonstrating positive neuroplastic changes in the brain after CO-OP intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150831PMC
http://dx.doi.org/10.3389/fnhum.2024.1316117DOI Listing

Publication Analysis

Top Keywords

grey matter
44
matter volume
36
cortical grey
20
co-op intervention
12
grey
11
matter
11
volume
10
changes cortical
8
cognitive orientation
8
orientation daily
8

Similar Publications

Mapping the neural substrate of high dual-task gait cost in older adults across the cognitive spectrum.

Brain Struct Funct

January 2025

Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond Street, North London, ON, N6A 5C1, Canada.

The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline.

View Article and Find Full Text PDF

The two sides of Phobos: Gray and white matter abnormalities in phobic individuals.

Cogn Affect Behav Neurosci

January 2025

Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, La Laguna, 38200, Tenerife, Spain.

Small animal phobia (SAP) is a subtype of specific phobia characterized by an intense and irrational fear of small animals, which has been underexplored in the neuroscientific literature. Previous studies often faced limitations, such as small sample sizes, focusing on only one neuroimaging modality, and reliance on univariate analyses, which produced inconsistent findings. This study was designed to overcome these issues by using for the first time advanced multivariate machine-learning techniques to identify the neural mechanisms underlying SAP.

View Article and Find Full Text PDF

Childhood abuse represents one of the most potent risk factors for the development of psychopathology during childhood, accounting for 30-60% of the risk for onset. While previous studies have separately associated reductions in gray matter volume (GMV) with childhood abuse and internalizing psychopathology (IP), it is unclear whether abuse and IP differ in their structural abnormalities, and which GMV features are related to abuse and IP at the individual level. In a pooled multisite, multi-investigator sample, 246 child and adolescent females between the ages of 8-18 were recruited into studies of interpersonal violence (IPV) and/or IP (i.

View Article and Find Full Text PDF

Alpha-synuclein (αS) aggregation is a widely regarded hallmark of Parkinson's disease (PD) and can be detected through synuclein amplification assays (SAA). This study investigated the association between cerebrospinal fluid (CSF) radiological measures in 41 PD patients (14 iPD, 14 GBA1-PD, 13 LRRK2-PD) and 14 age-and-sex-matched healthy controls. Quantitative measures including striatal binding ratios (SBR), whole-brain and deep gray matter volumes, neuromelanin-MRI (NM-MRI), functional connectivity (FC), and white matter (WM) diffusion-tensor imaging (DTI) were calculated.

View Article and Find Full Text PDF

Background: Individuals with Down syndrome (DS) have an increased genetic risk of developing Alzheimer's disease (AD), with most adults developing AD neuropathology in their 40s. Despite having a low frequency of systemic vascular risk factors such as hypertension and atherosclerosis, adults with DS display cerebrovascular pathology, including microbleeds, microinfarcts, and cerebral amyloid angiopathy. This suggests that blood-brain barrier (BBB) integrity may be compromised allowing the extravasation of blood proteins in the brain parenchyma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!