In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically controlled to isolate the system, a condition known as a bound-state-in-continuum (BIC). Despite the recent advances in engineered BICs for photonic waveguiding, practical implementations are still largely polarization- and geometry-specific, and the underlying principles remain to be systematically explored. Here, we theoretically and experimentally study low loss BIC photonic waveguiding within a two-layer heterogeneous electro-optically active integrated photonic platform. We show that coupling to the slab wave continuum can be selectively suppressed for guided modes with different polarizations and spatial structure. We demonstrate a low-loss same-polarization quasi-BIC guided mode enabling a high extinction Mach-Zehnder electro-optic amplitude modulator within a single SiN ridge waveguide integrated with an extended LiNbO slab layer. By elucidating the broad BIC waveguiding principles and demonstrating them in an industry-relevant photonic configuration, this work may inspire innovative approaches to photonic applications such as switching and filtering. The broader impact of this work extends beyond photonics, influencing research in other wave dynamics disciplines, including microwave and acoustics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151840 | PMC |
http://dx.doi.org/10.1364/OPTICA.516044 | DOI Listing |
Med Phys
January 2025
Department of Radiation Oncology, Stanford University, Palo Alto, California, USA.
Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Ataturk Vocational School of Health Services, Department of Medical Laboratory Techniques, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
The development and progression of osteoarthritis (OA) are believed to involve inflammation. This study aimed to investigate the effects of applying therapeutic ultrasound (US) to human osteoarthritic chondrocytes in continuous and pulsed modes on cell proliferation and proinflammatory cytokine levels. Human osteoarthritic chondrocytes (HC-OA 402OA-05a) were proliferated in appropriate media and then seeded into culture plates.
View Article and Find Full Text PDFSimulation-Debriefing Enhanced Needs Assessment (SDENA) is a simulation-based approach to prospective hazard analysis that uses simulation and debriefing as a unit-level diagnostic tool. Scenarios address failure modes for health care improvement targets, and debriefing explores unit-specific barriers and resiliencies. Debriefing guides are structured to explore how six drivers of a behavior engineering framework (data, tools/resources, incentives, knowledge/skills, capacity, motivation) influence clinical behaviors.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.
View Article and Find Full Text PDFMol Med
January 2025
Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China.
Background: This study aimed to investigate the impact of AM1241 on lipopolysaccharide (LPS)-induced chondrocyte inflammation in mice and its potential mechanism for improving osteoarthritis (OA).
Methods: The OA mice model was established employing the refined Hulth method. The impact of different concentrations of AM1241 on mice chondrocyte activity was detected using CCK-8.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!