Distinguishing diffuse large B-cell lymphoma from Hodgkin's lymphoma in children using an enhanced computed tomography radiomics approach.

Transl Pediatr

Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.

Published: May 2024

Background: Diffuse large B-cell lymphoma (DLBCL) and Hodgkin's lymphoma (HL) are two completely different pathologic subtypes of lymphoma with distinctly different clinical presentations and treatment options. Thus, accurately differentiating between the two subtypes has important clinical implications. This study aimed to construct a radiomics model capable of distinguishing between DLBCL and HL based on enhanced computed tomography (CT) for the non-invasive diagnosis of lymphoma subtypes.

Methods: The clinical and imaging data of 16 patients confirmed to have DLBCL (33 lymphomas), and 50 patients confirmed to have HL (106 lymphomas) were retrospectively analyzed. The patients were completely randomized into a training set (n=107, DLBLC׃HL ratio: 23׃84) and a test set (n=32, DLBCL׃HL ratio: 10׃22). After multiple down-sampling, 2,264 radiomics features were automatically extracted by the application software. Feature selection was performed in the training set using Spearman's rank correlation coefficients, maximum correlation minimum redundancy, and the least absolute shrinkage and selection operator algorithm in that order. The features after selection were used to build radiomics models by logistic regression (LR) and quadratic discriminant analysis (QDA). We evaluated the model ability using receiver operating characteristic (ROC) curves and the DeLong test. Moreover, clinical indicators, such as gender, age, clinical stage, and lactate dehydrogenase (LDH), were collected and analyzed by univariate and multivariate LR analyses. The radiomics characteristics with clinical indicators that had independent influences on predicting the pathological subtypes were used to establish a comprehensive classification model.

Results: The analysis of the clinical data revealed that LDH can serve as a clinical indicator that has an independent influence on the prediction of HL and DLBCL. The results of the radiomics models were as follows: Radiomics_LR: area under the curve (AUC) =0.814 [95% confidence interval (CI): 0.628-0.999]; and Radiomics_QDA: AUC =0.841 (95% CI: 0.691-0.991). Following the inclusion of LDH as a clinical indicator in the analysis, the results of the comprehensive models were as follows: Radiomics + LDH_LR: AUC =0.768 (95% CI: 0.580-0.956); and Radiomics + LDH_QDA: AUC was 0.845 (95% CI: 0.695-0.996).

Conclusions: The models based on radiomics and clinical features were able to effectively distinguish DLBCL from HL. The model with the best overall performance was the Radiomics_LR model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148730PMC
http://dx.doi.org/10.21037/tp-23-586DOI Listing

Publication Analysis

Top Keywords

clinical
10
radiomics
9
diffuse large
8
large b-cell
8
b-cell lymphoma
8
hodgkin's lymphoma
8
enhanced computed
8
computed tomography
8
patients confirmed
8
training set
8

Similar Publications

The rise in antimicrobial resistance poses a significant threat to global health, particularly among diabetic patients who are prone to urinary tract infections (UTIs). Pathogens that cause UTI among diabetic patients exhibit significant multidrug resistance (MDR) patterns, necessitating more precise empirical treatment strategies..

View Article and Find Full Text PDF

Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles.

Cell Transplant

January 2025

Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China.

Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs).

View Article and Find Full Text PDF

Simulated microgravity predisposes kidney to injury through promoting intrarenal artery remodeling.

FASEB J

January 2025

Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.

Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.

View Article and Find Full Text PDF

It has been well accumulated that G-quadruplex (G4-DNA) has great anticancer relevance, and various heterocyclic moieties have been synthesized and examined as potent G4-DNA binders with promising anticancer activity. Here, we have synthesized a series of naphthalimide-triazole-coumarin conjugates by substituting various amines and further examine their anticancer activity against 60 human cancer cell lines at 10 μM. One and five dose concentration results reveal low values of MG-MID GI for compounds including (3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!