A protocol for the synthesis of α-amino-vinylphosphine oxides by phosphinoenamination reaction between alkyl nitriles and phosphine oxides was developed. The combination of Mn(OAc) as a Lewis acid and guanidine as a Lewis base was found to be an efficient catalytic system for this reaction. A series of alkyl nitriles and phosphine oxides are compatible with this conversion, furnishing the desired products in up to 95% yield under mild conditions. Furthermore, this method demonstrates the capability of gram-scale synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ob00489b | DOI Listing |
Org Lett
January 2025
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
Herein, we report an electricity-driven activation of aziridine via direct anodic oxidation to give -heterocycles and 1,2-bifunctionalized products by excluding any oxidant/reductant or metal catalyst. Many structurally modified aziridines were employed in the presence of different nitriles. A large variety of nucleophiles were screened to furnish chemoselectively O-alkylated and C-alkylated products.
View Article and Find Full Text PDFPLoS One
January 2025
Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
Endometriosis is a chronic inflammatory disorder characterized by presence of endometrial tissue outside the uterine cavity. Immunohistochemical analysis (IHC) revealed markedly elevated expression of IL6ST in endometrial tissue of patients with ovarian endometriosis. Level of methylation of IL6ST is diminished in patients with endometriosis, whereas level of mRNA expression is markedly elevated by RT-PCR.
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India.
A facile two-step enantiospecific synthesis of 5,6,7,8-tetrahydroindolizine scaffolds has been developed via TMSOTf-promoted [3 + 2] cycloaddition between carbohydrate-derived spirocyclic donor-acceptor cyclopropanecarboxlates and alkyl/aryl nitriles followed by an intramolecular Mitsunobu reaction of the resulting chiral 2/5-(4-hydroxybutyl)pyrrole derivatives.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
Herein, we report a formal C-C bond azidation and cyanation of unactivated aliphatic ketones using commercially available tosyl azide and cyanide, respectively. A visible-light-mediated organophotocatalyst enables radical azidation and cyanation of ketone-derived pro-aromatic dihydroquinazolinones (under mostly redox-neutral conditions) as supported by preliminary mechanistic studies. These metal-free and scalable protocols can be used to synthesize tertiary, secondary, and primary alkyl azides and nitriles with good functional group tolerance and postsynthetic diversification of the azide group, including bioconjugation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!