Passive integrated transponder (PIT) technology is a leading tool for tracking fish in freshwater systems. PIT is highly applicable for assessing fish passage at anthropogenic infrastructure (e.g., dams and floodgates); however, there are often complications in operating PIT antennas near these structures due to the ambient electromagnetic interference of metal and power-supply equipment. We designed a PIT antenna that is resistant to the effects of ambient electromagnetic interference (AEMI). This design uses lobes with balanced polarity within the antenna to neutralize AEMI within the vicinity of the antenna. This novel PIT antenna provides a more effective and cost-efficient option for researchers tracking fish in environments with high AEMI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfb.15826 | DOI Listing |
J Vis Exp
December 2024
Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong; ZeBlast Technology Limited, Hong Kong Science Park;
Intravenous (IV) injection is widely recognized as the most effective and commonly utilized method for achieving systemic delivery of substances in mammalian research models. However, its application in adult zebrafish for drug delivery, stem cell transplantation, and regenerative and cancer studies has been limited due to the challenges posed by their small body size and intricate blood vessels. To overcome these limitations, alternative injection techniques such as intracardiac and retro-orbital (RO) injection have been explored in the past for stem cell transplantation in adult zebrafish.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA.
Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end-to-end Atlantis ecosystem model to compare and contrast the effects of climate-driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK.
Rapid growth in bio-logging-the use of animal-borne electronic tags to document the movements, behaviour, physiology and environments of wildlife-offers opportunities to mitigate biodiversity threats and expand digital natural history archives. Here we present a vision to achieve such benefits by accounting for the heterogeneity inherent to bio-logging data and the concerns of those who collect and use them. First, we can enable data integration through standard vocabularies, transfer protocols and aggregation protocols, and drive their wide adoption.
View Article and Find Full Text PDFSci Rep
January 2025
Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK.
Understanding the spatial ecology of commercially exploited species is vital for their conservation. Atlantic bluefin tuna (Thunnus thynnus, ABT) are increasingly observed in northeast Atlantic waters, yet knowledge of these individuals' spatial ecology remains limited. We investigate the horizontal and vertical habitat use of ABT (158 to 241 cm curved fork length; CFL) tracked from waters off the United Kingdom (UK) using pop-up satellite archival tags (n = 63).
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!