Plant-derived Exosomes: Pioneering Breakthroughs in Therapeutics, Targeted Drug Delivery, and Regenerative Medicine.

Pharm Nanotechnol

Department of Pharmaceutical Technology, School of Health and Medical Science, Adamas University, Kolkata -700126.

Published: June 2024

Small extracellular vesicles called exosomes, which cells release, have drawn a lot of attention recently because of their ability to serve as therapeutic delivery systems for drugs and regenerative medicine applications. The investigation of plant-based exosomes as a cutting-edge platform for drug administration has emerged as an enticing research topic. A summary of the pharmaceutical feasibility of exosomes generated from plants and their uses in drug delivery along with regenerative medicine are the goals of this review study. Plant exosomes can be combined into nanoparticlebased medication delivery systems to increase their stability, targeting, and cargo delivery capabilities. By loading plant exosomes with therapeutic compounds and encapsulating them within nanoparticles, controlled release and targeted distribution to specific cells or tissues may be achieved. In gene therapy, plant exosomes can be modified to carry nucleic acids like plasmid DNA, siRNA, or miRNA. Effective gene delivery and therapeutic gene expression regulation can be accomplished by encasing nucleic acids in exosomes or surface-modifying exosomes to improve their interaction with target cells. In this review, we through the history and features of plant exosomes, examine how they differ from mammalian exosomes, and consider how they may be used for gene therapy, tissue regeneration, and targeted medication delivery. The difficulties and prospects for creating exosomebased plant medicines are also explored.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0122117385305245240424093014DOI Listing

Publication Analysis

Top Keywords

plant exosomes
16
regenerative medicine
12
exosomes
10
drug delivery
8
delivery regenerative
8
delivery systems
8
medication delivery
8
gene therapy
8
nucleic acids
8
delivery
7

Similar Publications

Role of Acorus calamus extract in reducing exosome secretion by targeting Rab27a and nSMase2: a therapeutic approach for breast cancer.

Mol Biol Rep

January 2025

Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.

Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.

View Article and Find Full Text PDF

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

[Anti-skin Aging Effects of Kale-derived Exosome-like Nanoparticles].

Yakugaku Zasshi

January 2025

Department of Agriculture, Graduate School of Science and Technology, Shinshu University.

In an aging society, there is a growing interest in functional foods that offer anti-aging benefits. Food-derived bioactive compounds such as carotenoids and polyphenols can enhance skin elasticity and delay aging. However, the mechanisms by which these orally ingested compounds directly impact the skin are not fully understood.

View Article and Find Full Text PDF

A small RNA effector conserved in herbivore insects suppresses host plant defense by cross-kingdom gene silencing.

Mol Plant

January 2025

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of phloem-feeding whitefly (Bemisa tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum).

View Article and Find Full Text PDF

-Derived Exosome-Like Nanoparticles Mitigate Colitis in Mice via Inhibition of the NLRP3 Signaling Pathway and Modulation of the Gut Microbiota.

Int J Nanomedicine

January 2025

Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.

Background: Plant-derived exosome-like nanoparticles (PELNs) have received widespread attention in treating ulcerative colitis (UC). However, the role of -derived exosome-like nanoparticles (HELNs) in UC remains unclear. This study aims to evaluate the efficacy of HELNs in treating colitis in mice and investigate its potential mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!