A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deployment and validation of the CLL treatment infection model adjoined to an EHR system. | LitMetric

Research algorithms are seldom externally validated or integrated into clinical practice, leaving unknown challenges in deployment. In such efforts, one needs to address challenges related to data harmonization, the performance of an algorithm in unforeseen missingness, automation and monitoring of predictions, and legal frameworks. We here describe the deployment of a high-dimensional data-driven decision support model into an EHR and derive practical guidelines informed by this deployment that includes the necessary processes, stakeholders and design requirements for a successful deployment. For this, we describe our deployment of the chronic lymphocytic leukemia (CLL) treatment infection model (CLL-TIM) as a stand-alone platform adjoined to an EPIC-based Danish Electronic Health Record (EHR), with the presentation of personalized predictions in a clinical context. CLL-TIM is an 84-variable data-driven prognostic model utilizing 7-year medical patient records and predicts the 2-year risk composite outcome of infection and/or treatment post-CLL diagnosis. As an independent validation cohort for this deployment, we used a retrospective population-based cohort of patients diagnosed with CLL from 2018 onwards (n = 1480). Unexpectedly high levels of missingness for key CLL-TIM variables were exhibited upon deployment. High dimensionality, with the handling of missingness, and predictive confidence were critical design elements that enabled trustworthy predictions and thus serves as a priority for prognostic models seeking deployment in new EHRs. Our setup for deployment, including automation and monitoring into EHR that meets Medical Device Regulations, may be used as step-by-step guidelines for others aiming at designing and deploying research algorithms into clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153589PMC
http://dx.doi.org/10.1038/s41746-024-01132-6DOI Listing

Publication Analysis

Top Keywords

deployment
10
cll treatment
8
treatment infection
8
infection model
8
clinical practice
8
automation monitoring
8
describe deployment
8
deployment validation
4
validation cll
4
model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!