Exhaust emissions, which count among the most common causes of premature death worldwide, can cause irreversible changes in cells, leading to their damage or degeneration. In this research, L929 line cells were observed after exposure in the BAT-CELL chamber to exhaust gases emitted from a Euro 6 compression-ignition engine. Real road traffic conditions were simulated, taking into account air resistance while driving at speeds of 50 km/h, 120 km/h and idling engine. Morphological analysis of the cells was performed using an environmental scanning electron microscope. It has been observed that diesel exhaust fumes can cause inflammation, which can induce apoptosis or leads to necrotic cell death. The impact of the vehicle exhaust gases can inhibit cell proliferation by almost three times. Moreover, a correlation has been observed between the speed of the inflammatory reaction in cells and the presence of specific hydrocarbon compounds that determine the toxicity of exhaust gases. Research has shown that the toxicity of the emitted exhaust gases has been the highest at the driving speed of 120 km/h. In order to reduce the harmful effects of exhaust emissions, ecological alternatives and the supplementation of legal provisions regarding the compounds subject to limitation are necessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153568PMC
http://dx.doi.org/10.1038/s41598-024-63560-4DOI Listing

Publication Analysis

Top Keywords

exhaust gases
16
l929 cells
8
exhaust
8
diesel exhaust
8
bat-cell chamber
8
exhaust emissions
8
cells
5
low-vacuum sem
4
sem imaging
4
imaging viability
4

Similar Publications

Background: Billions of dollars have been spent implementing regulations to reduce traffic-related air pollution (TRAP) from exhaust pipe emissions. However, few health studies have evaluated the change in TRAP emissions and associations with infant health outcomes. We hypothesize that the magnitude of association between vehicle exposure measures and adverse birth outcomes has decreased over time, parallelling regulatory improvements in exhaust pipe emissions.

View Article and Find Full Text PDF

Recycled calcium polypeptides modulate microbial dynamics and enhance bioconversion in kitchen waste-garden waste co-composting system.

J Environ Manage

December 2024

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:

The kitchen waste and garden waste (KW-GW) co-composting system provides an effective method for recycling these two types of municipal solid waste; however, further improvements are needed to enhance bioconversion performance. This study investigates a novel composting additive, calcium polypeptides (CPPs), derived from waste animal and plant proteins, which can enhance the bioconversion capacity of biomass in the KW-GW co-composting system. As a pH regulator and an available nitrogen source, CPPs significantly increase the compost matrix pH, prolong the thermophilic phase, and reduce emissions of exhaust gases such as CH, NO, NH, and HS by 52.

View Article and Find Full Text PDF

One of the main causes of air pollution, particularly in large cities, is vehicles due to it continued use of hydrocarbon fuels. The understanding of nonlinear interactions of vehicle parameters uncovers more realistic relationships for enhancing formulation of strategies to address vehicle-related pollution. Thus, the study aims to evaluate the interaction and quadratic effect of vehicle parameters on Hydrocarbon (HC), Carbon dioxide (CO2), Carbon monoxide (CO), and Nitrogen oxide (NOx) emissions.

View Article and Find Full Text PDF

Exhaust gases from the smelting furnace have high temperature and mass flow rate, and there is huge potential to use them for energy-related purposes such as electricity generation, cooling and heating. Utilization of the gases for energy-related purposes would lead to fuel savings and emissions reduction. To use this potential, it is necessary to design proper systems and cycles and apply a heat recovery unit.

View Article and Find Full Text PDF

Using pure hydrogen (H) or mixtures of H and natural gas in gas-fired power plants represents a viable route to decarbonize electric power generation. This study models a system designed to cool the air at the compressor inlet to 8.8 °C, achieve a flue gas oxygen percentage of 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!