Immunogenic effects of enamel matrix derivative on human alveolar ridge mucosa-derived vascular endothelial cells under lipopolysaccharide stimulation.

Odontology

Field of Advanced Conservative Dentistry and Periodontology, Periodontology, Course of Clinical Science, The Nippon Dental University Graduate School Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.

Published: June 2024

Early peri-implant disease detection remains difficult. Enamel matrix derivative (EMD), which is used for periodontal tissue regeneration, promotes leukocyte chemotactic factor and adhesion molecule expression in vascular endothelial cells. We hypothesized that stimulating vascular endothelial cells with EMD would induce an inflammatory response in the peri-implant mucosa, enabling early peri-implant infection detection. To verify this hypothesis, we assessed the intercellular adhesion between human alveolar ridge mucosa-derived vascular endothelial cells (ARMEC) stimulated with lipopolysaccharide (LPS) and EMD and human periodontal ligament-derived vascular endothelial cells (PDLEC). Leukocyte chemotactic factors and cell adhesion molecules were investigated and we established an experimental model of peri-implant disease by stimulating ARMEC (representing the peri-implant mucosa) with Porphyromonas gingivalis-derived LPS. ARMEC and PDLEC were obtained from patients (n = 6) who visited the Nippon Dental University Niigata Hospital. The cells were divided into four subcategories, each cultured with: LPS (1 µg/mL), EMD (100 µg/mL), LPS + EMD, and pure medium. Cell viability, leukocyte chemotactic factor (interleukin-8: IL-8), adhesion molecules (intercellular adhesion molecule-1: ICAM-1), tight junction protein gene expression (zonula occludens-1: ZO-1 and Occludin), and transendothelial electrical resistance (TEER) was then determined. LPS reduced ARMEC viability, whereas simultaneous stimulation with EMD improved it. LPS and EMD stimulation enhanced IL-8 and ICAM-1 gene expression, suppressed TEER, and decreased ZO-1 and Occludin expression levels compared to that with stimulation with LPS alone. EMD stimulates leukocyte migration, increase vascular permeability, and trigger an immune response in the peri-implant mucosa, thus facilitating the early detection and treatment of peri-implant disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10266-024-00959-5DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
20
endothelial cells
20
peri-implant disease
12
leukocyte chemotactic
12
peri-implant mucosa
12
lps emd
12
enamel matrix
8
matrix derivative
8
human alveolar
8
alveolar ridge
8

Similar Publications

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.

View Article and Find Full Text PDF

Efficacy of Anti-Vascular Endothelial Growth Factor (VEGF) Therapy for Age-Related Macular Degeneration.

Cureus

November 2024

General Medicine, Barts Health National Health Service (NHS) Trust, London, GBR.

Anti-vascular endothelial growth factor (VEGF) drugs are used for various diseases with abnormal proliferation of blood vessels. The use of these drugs in wet age-related macular degeneration (AMD) has proven to be highly effective. Various factors contribute to the efficacy of these drugs in different settings.

View Article and Find Full Text PDF

Functional screening identifies miRNAs with a novel function inhibiting Vascular Smooth Muscle Cell proliferation.

Mol Ther

December 2024

Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh; Edinburgh EH16 4TJ, UK; CARIM school for cardiovascular sciences, Department of Pathology, Maastricht University Medical Center (MUMC); Maastricht 6229HX, The Netherlands. Electronic address:

Proliferation of vascular smooth muscle cells (vSMCs) is a crucial contributor to pathological vascular remodelling. MicroRNAs (miRNAs) are powerful gene regulators and attractive therapeutic agents. Here, we aim to systematically identify and characterise miRNAs with therapeutic potential in targeting vSMC proliferation.

View Article and Find Full Text PDF

Background: Tuina is an effective treatment for the decrease of skeletal muscle atrophy after peripheral nerve injury. However, the underlying mechanism of action remains unclear. This study aimed to explore the underlying mechanisms of tuina in rats with sciatic nerve injury (SNI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!