Purpose: The purpose of our study is to validate the robustness and accuracy of consensus contour in 2-deoxy-2-[ F]fluoro-D-glucose ( F-FDG) PET radiomic features.

Methods: 225 nasopharyngeal carcinoma (NPC) and 13 extended cardio-torso (XCAT) simulated data were enrolled. All segmentation were performed with four segmentation methods under two different initial masks, respectively. Consensus contour (ConSeg) was then developed using the majority vote rule. 107 radiomic features were extracted by Pyradiomics based on segmentation and the intraclass correlation coefficient (ICC) was calculated for each feature between masks or among segmentation, respectively. In XCAT ICC between segmentation and simulated ground truth were also calculated to access the accuracy.

Results: ICC varied with the dataset, segmentation method, initial mask and feature type. ConSeg presented higher ICC for radiomic features in robustness tests and similar ICC in accuracy tests, compared with the average of four segmentation results. Higher ICC were also generally observed in irregular initial masks compared with rectangular masks in both robustness and accuracy tests. Furthermore, 19 features (17.76%) had ICC ≥ 0.75 in both robustness and accuracy tests for any of the segmentation methods or initial masks. The dataset was observed to have a large impact on the correlation relationships between radiomic features, but not the segmentation method or initial mask.

Conclusions: The consensus contour combined with irregular initial mask could improve the robustness and accuracy in radiomic analysis to some extent. The correlation relationships between radiomic features and feature clusters largely depended on the dataset, but not segmentation method or initial mask.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153434PMC
http://dx.doi.org/10.1186/s40658-024-00652-0DOI Listing

Publication Analysis

Top Keywords

robustness accuracy
20
consensus contour
16
radiomic features
16
initial masks
12
segmentation method
12
method initial
12
initial mask
12
accuracy tests
12
segmentation
10
improve robustness
8

Similar Publications

External Validation of a 5-Factor Risk Model for Breast Cancer-Related Lymphedema.

JAMA Netw Open

January 2025

Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

Importance: Secondary lymphedema is a common, harmful side effect of breast cancer treatment. Robust risk models that are externally validated are needed to facilitate clinical translation. A published risk model used 5 accessible clinical factors to predict the development of breast cancer-related lymphedema; this model included a patient's mammographic breast density as a novel predictive factor.

View Article and Find Full Text PDF

Low-grade endometrial stromal sarcoma (LG-ESS) can present diagnostic challenges, due to its overlapping morphological features with other uterine mesenchymal tumors. Misdiagnosis rates remain significant, and immunohistochemical data for LG-ESS are limited to small series and inconsistent antibody panels. This study aimed to refine the IHC profile of LG-ESS by analyzing a large, molecularly confirmed series of 147 cases using a panel of 24 antibodies, including newer markers like transgelin and smoothelin.

View Article and Find Full Text PDF

Underwater acoustic propagation is a complex phenomenon in the ocean environment. Traditional methods for calculating acoustic propagation loss rely on solving complex partial differential equations. Deep learning methods, leveraging their robust nonlinear approximation capabilities, can model various physical phenomena effectively, significantly reducing computation time and cost.

View Article and Find Full Text PDF

This study aimed to evaluate the ability of the preoperative Hemoglobin, Albumin, Lymphocyte count, and Platelet (HALP) score to predict lymph node metastasis (LNM) in patients with rectal cancer (RC) and improve prediction accuracy by incorporating clinical parameters. Data from 263 patients with RC were analyzed. The receiver operating characteristic (ROC) curve was used to determine the optimal cutoff value (OCV) for the HALP score in predicting LNM.

View Article and Find Full Text PDF

Versatile graceful degradation framework for bio-inspired proprioception with redundant soft sensors.

Front Robot AI

January 2025

Neuro-robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.

Reliable proprioception and feedback from soft sensors are crucial for enabling soft robots to function intelligently in real-world environments. Nevertheless, soft sensors are fragile and are susceptible to various damage sources in such environments. Some researchers have utilized redundant configuration, where healthy sensors compensate instantaneously for lost ones to maintain proprioception accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!