Ultra-Fast-Healing Glassy Hyperbranched Plastics Capable of Restoring 26.4 MPa Tensile Strength within One Minute at Room Temperature.

Angew Chem Int Ed Engl

State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.

Published: August 2024

The growing concern regarding widespread plastic pollution has propelled the development of sustainable self-healing plastics. Although considerable efforts have been dedicated to fabricating self-healing plastics, achieving rapid healing at room temperature is extremely challenging. Herein, we have developed an ultra-fast-healing glassy polyurethane (UGPU) by designing a hyperbranched molecular structure with a high density of multiple hydrogen bonds (H-bonds) on compliant acyclic heterochains and introducing trace water to form water bridge across the fractured surfaces. The compliant acyclic heterochains allow the dense multiple hydrogen bonds to form a frozen network, enabling tensile strength of up to 70 MPa and storage modulus of 2.5 GPa. The hyperbranched structure can drive the reorganization of the H-bonding network through the high mobility of the branched chains and terminals, thereby leading to self-healing ability at room temperature. Intriguingly, the presence of trace water vapor facilitates the formation of activated layers and the rearrangement of networks across the fractured UGPU sections, thereby enabling ultra-fast self-healing at room temperature. Consequently, the restored tensile strength after healing for 1 minute achieves a historic-record of 26.4 MPa. Furthermore, the high transparency (>90 %) and ultra-fast healing property of UGPU make it an excellent candidate for advanced optical and structural materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202408250DOI Listing

Publication Analysis

Top Keywords

room temperature
16
tensile strength
12
ultra-fast-healing glassy
8
self-healing plastics
8
multiple hydrogen
8
hydrogen bonds
8
compliant acyclic
8
acyclic heterochains
8
trace water
8
glassy hyperbranched
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!