A promising strategy to control bacterial diseases involves using Quorum Sensing Inhibitor (QSI) compounds. This study aimed to evaluate the potential of Falcaria vulgaris plant extract to combat the phytopathogenic Pectobacterium carotovorum subsp. carotovorum (Pcc) via its QSI activity. Using biosensors and Minimum Inhibitory Concentration (MIC) assays, the QSI and antimicrobial aspects of the extract were assessed. Furthermore, the effect of the extract on the reduction of tuber maceration in potatoes was examined. Subsequently, homology modeling based on LasR was conducted to analyze interactions between ligand 3-oxo-C8-AHL, and ExpR2 protein. Docking studies were performed on all extract compounds identified via Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The extract effectively reduced maceration at sub-MIC concentrations across various pathogenic strains. Furthermore, Cyclopentadecanone, 2-hydroxy, showed more negative docking energy than the native ligand. Z,E-2,13-Octadecadien-1-ol showed energy equivalence to the native ligand. Additionally, this plant included certain compounds or their analogs that had previously been discovered as QSI compounds. These compounds included oleic acid, n-Hexadecanoic acid, cytidine, and linoleic acid, and they had energies that were comparable to that of the native ligand. In conclusion, the remarkable QSI property showed by this plant is likely attributed to a combination of compounds possessing this characteristic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2024.104535DOI Listing

Publication Analysis

Top Keywords

native ligand
12
falcaria vulgaris
8
quorum sensing
8
pectobacterium carotovorum
8
carotovorum subsp
8
subsp carotovorum
8
qsi compounds
8
extract
6
compounds
6
qsi
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!