Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brown fat can present challenges in patients with cancer who undergo F-FDG PET scans. Uptake of F-FDG by brown fat can obscure or appear similar to active oncologic lesions, causing clinical challenges in PET interpretation. Small, retrospective studies have reported environmental and pharmacologic interventions for suppressing brown fat uptake on PET; however, there is no clear consensus on best practices. We sought to characterize practice patterns for strategies to mitigate brown fat uptake of F-FDG during PET scanning. A survey was developed and distributed via e-mail LISTSERV to members of the Children's Oncology Group diagnostic imaging committee, the Society for Nuclear Medicine and Molecular Imaging pediatric imaging council, and the Society of Chiefs of Radiology at Children's Hospitals between April 2022 and February 2023. Responses were stored anonymously in REDCap, aggregated, and summarized using descriptive statistics. Fifty-five complete responses were submitted: 51 (93%) faculty and fellow-level physicians, 2 (4%) technologists, and 2 (4%) respondents not reporting their rank. There were 43 unique institutions represented, including 5 (12%) outside the United States. Thirty-eight of 41 (93%) institutions that responded on environmental interventions reported using warm blankets in the infusion and scanning rooms. Less than a third ( = 13, 30%) of institutions reported use of a pharmacologic intervention, with propranolol ( = 5, 38%) being most common, followed by fentanyl ( = 4, 31%), diazepam ( = 2, 15%), and diazepam plus propranolol ( = 2, 15%). Selection criteria for pharmacologic intervention varied, with the most common criterion being brown fat uptake on a prior scan ( = 6, 45%). Clinical practices to mitigate brown fat uptake on pediatric F-FDG PET vary widely. Simple environmental interventions including warm blankets or increasing the temperature of the injection and scanning rooms were not universally reported. Less than a third of institutions use pharmacologic agents for brown fat mitigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2967/jnmt.123.266536 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!