Objectives: Carbapenem-resistant organisms (CROs) are a significant public health threat globally, particularly in countries like India with high antibiotic resistance rates. The current study investigates the prevalence of CROs, detects resistance mechanisms using phenotypic methods and assesses the efficacy of newer antibiotics against CROs.

Methods: A prospective study conducted at a tertiary care hospital in India during 2021-23. Clinical specimens were processed and bacterial identification was performed using MALDI-TOF mass spectrometry followed by antimicrobial susceptibility testing using CLSI guidelines against a plethora of newer antibiotics for CROs. Carbapenemase production was detected using phenotypic methods, and the presence of the mcr-1 gene was assessed by real-time PCR.

Results: During the study period, predominantly (70 %) Gram-negative bacteria were isolated; amongst which 5692 strains were carbapenem-resistant, wherein resistance to different carbapenems ranged from 34.1% to 79 %. Majority of the carbapenemase producers were metallo-β-lactamases (MBL) producers (75 %). Colistin resistance was noted in 5.4 % of selected carbapenem-resistant isolates. Among newer antibiotics, cefiderocol demonstrated the lowest resistance rates (0-14 %), while resistance to newer β-lactam/β-lactamase inhibitor combinations was very high in carbapenem-resistant isolates. Fosfomycin, minocycline and tigecycline, each showing variable efficacy depending on the site of infection. Moreover, newer β-lactam/β-lactamase inhibitor combinations offer restricted benefits due to widespread prevalence of MBL in the region.

Conclusion: The escalating prevalence of CROs in India underscores the urgency for alternative treatment options beyond colistin. Hence, highlighting the critical importance of developing effective strategies to combat carbapenem resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jiac.2024.05.017DOI Listing

Publication Analysis

Top Keywords

newer antibiotics
12
carbapenem-resistant organisms
8
resistance rates
8
prevalence cros
8
phenotypic methods
8
carbapenem-resistant isolates
8
newer β-lactam/β-lactamase
8
β-lactam/β-lactamase inhibitor
8
inhibitor combinations
8
resistance
7

Similar Publications

Heterocyclic chemistry gathered a wide audience due to their presence in potential drug candidates and being attractive synthons initiating several retro-syntheses the organic as well as in medicinal chemistry fields. Among them, azetidinones have been a subject of discussion due to their serendipity, curiosity, versatility by Penicillin and Cephalosporins as β-lactam antibiotics. Despite possessing a large margin of biological activities, azetidinones mainly work as antimicrobial, interfering with bacterial cell-wall synthesis blocking transpeptidase.

View Article and Find Full Text PDF

Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

Background: The Infectious Diseases Society of America (IDSA) publishes annual guidance on the treatment of antimicrobial-resistant (AMR) gram-negative infections. Within the AMR guidance, suggested dosages of antibiotics for adults infected with AMR pathogens are provided. This document serves as a companion document to the IDSA guidance to assist pediatric specialists with dosing β-lactam agents for the treatment of AMR infections in children.

View Article and Find Full Text PDF

Introduction: In response to continued public health emergency of antimicrobial resistance (AMR), a significant key strategy is the discovery of novel mycobacterial efflux-pump inhibitors (EPIs) as potential adjuvants in combination drug therapy. Interest in identifying new chemotypes which could potentially synergize with the existing antibiotics and can be deployed as part of a combination therapy. This strategy could delay the emergence of resistance to existing antibiotics and increase their efficacy against resistant strains of mycobacterial species.

View Article and Find Full Text PDF

Cooling perspectives on the risk of pathogenic viruses from thawing permafrost.

mSystems

January 2025

U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Moffett Field, Moffett Field, California, USA.

Climate change is inducing wide-scale permafrost thaw in the Arctic and subarctic, triggering concerns that long-dormant pathogens could reemerge from the thawing ground and initiate epidemics or pandemics. Viruses, as opposed to bacterial pathogens, garner particular interest because outbreaks cannot be controlled with antibiotics, though the effects can be mitigated by vaccines and newer antiviral drugs. To evaluate the potential hazards posed by viral pathogens emerging from thawing permafrost, we review information from a diverse range of disciplines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!