Brain function emerges from a highly complex network of specialized cells that are interlinked by billions of synapses. The synaptic connectivity between neurons is established between the elongated processes of their axons and dendrites or, together, neurites. To establish these connections, cellular neurites have to grow in highly specialized, cell-type dependent patterns covering extensive distances and connecting with thousands of other neurons. The outgrowth and branching of neurites are tightly controlled during development and are a commonly used functional readout of imaging in the neurosciences. Manual analysis of neuronal morphology from microscopy images, however, is very time intensive and prone to bias. Most automated analyses of neurons rely on reconstruction of the neuron as a whole without a semantic analysis of each neurite. A fully-automated classification of all neurites still remains unavailable in open-source software. Here we present a standalone, GUI-based software for batch-quantification of neuronal morphology in two-dimensional fluorescence micrographs of cultured neurons with minimal requirements for user interaction. Single neurons are first reconstructed into binarized images using a Hessian-based segmentation algorithm to detect thin neurite structures combined with intensity- and shape-based reconstruction of the cell body. Neurites are then classified into axon, dendrites and their branches of increasing order using a geodesic distance transform of the cell skeleton. The software was benchmarked against a published dataset and reproduced the phenotype observed after manual annotation. Our tool promises accelerated and improved morphometric studies of neuronal morphology by allowing for consistent and automated analysis of large datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2024.05.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!