Background: Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking.

Objective: To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke.

Methods: We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved.

Conclusion: Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2024.114845DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
16
mitochondrial stress
12
molecular mechanisms
12
inflammation mitochondrial
8
stress ischemic
8
bibliometric analysis
8
ischemic
5
bibliometric
4
bibliometric insights
4
insights inflammation
4

Similar Publications

Background: Early neurological deterioration (END) is associated with a poor prognosis in acute ischemic stroke (AIS). Effectively lowering low-density lipoprotein cholesterol (LDL-C) can improve the stability of atherosclerotic plaque and reduce post-stroke inflammation, which may be an effective means to lower the incidence of END. The objective of this study was to determine the preventive effects of evolocumab on END in patients with non-cardiogenic AIS.

View Article and Find Full Text PDF

Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity.

Brain Topogr

January 2025

Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases.

View Article and Find Full Text PDF

Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke.

Chin Med

January 2025

Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.

Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 receptor agonist (GLP-1RA) treatment reduces cardiovascular events in type 2 diabetes. Yet, the impact of GLP-1RA treatment before ST-segment elevation myocardial infarction (STEMI) on long-term prognosis in patients with type 2 diabetes remains unclear. In patients with STEMI and type 2 diabetes, we aimed to investigate the association between long-term prognosis and GLP-1RA treatment before STEMI.

View Article and Find Full Text PDF

Introduction: Preclinical studies have shown that oxygen therapy can improve ischaemic brain tissue oxygen tension, reduce reperfusion injury after revascularisation, promote neuroregeneration and inhibit inflammatory responses potentially exerting a beneficial effect after endovascular treatment (EVT) in patients with acute ischaemic stroke (AIS). However, the optimal fraction of inspired oxygen (FiO) during EVT under general anaesthesia is currently unknown. Therefore, we are conducting a randomised controlled trial (RCT) to evaluate the impact of high-concentration oxygen vs low-concentration normobaric oxygen on early neurological function after EVT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!