The purpose of present work was to study the effects of permeation enhancers' two kinetic behaviors of simultaneous lateral diffusion and vertical penetration in the skin on its enhancing effect. The skin diffusion kinetics of isopropyl ester permeation enhancers were characterized by the innovative concentric tape peeling study and Raman imaging, which were quantitatively assessed through innovative parameters, namely, lateral-to-vertical penetration amount (C) and lateral-to-vertical penetration distance (D). The enhancement effect of permeation enhancers on drug flurbiprofen (FLU) was assessed by in vitro skin permeation tests, which were confirmed by transdermal water loss and skin resistance study. The relationship between kinetic parameters of permeation enhancers and permeation parameters of FLU was carried out by correlation analysis. The molecular mechanisms of effect of skin diffusion kinetics of permeation enhancers on drug permeation were characterized by molecular docking, modulated-temperature differential scanning calorimetry (MTDSC), Raman spectra, solid-state NMR and molecular dynamic simulation. The results indicated skin diffusion kinetics of short-chain (C8-C12) isopropyl ester permeation enhancers were governed by vertical penetration, while long-chain (C14-C18) ones were characterized by lateral spread. Quadratic correlation between C and enhancement ratio of permeation-retention ratio of FLU (ER) (R = 0.95), D and enhancement ratio of permeation area (ER) of FLU (R = 0.98) indicating that varied skin diffusion kinetics of permeation enhancers directly influenced the barrier function of stratum corneum (SC) and further enhancing drug permeation. In terms of molecular mechanism, long-chain isopropyl ester enhancers had good miscibility with SC, leading to their high C and D, and causing strong interaction strength with SC and resulting in weaker skin barrier function for drug permeation. In summary, in comparison to short-chain isopropyl ester enhancers that relied on penetration, long-chain ones that depended on lateral spread exhibited greater enhancement efficacy, which guided the application of enhancers in transdermal formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.124297 | DOI Listing |
Int J Biol Macromol
January 2025
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
This study focuses on the development of an efficient membrane-based clarification process to enhance the performance of subsequent ultrafiltration and produce high-quality sweet lime juice. A range of casting solutions were prepared using a blend of pore-forming polymers, including polyvinylpyrrolidone (PVP), polyvinylidene fluoride (PVDF), and cellulose acetate (CA), dissolved in dimethylformamide (DMF) solvent through the phase inversion technique. To further enhance the membrane's performance, four biopolymers poly (lactic acid) (PLA), xanthan gum, chitosan, and gelatin were incorporated, with and without clay, to refine its structure, porosity, and surface properties.
View Article and Find Full Text PDFUnlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
College of Animal Science, Guizhou University, Guiyang, Guizhou, People's Republic of China.
Background: Adjusting thickening agent proportions in nanoemulsion gel (NG) balances its transdermal and topical delivery properties, making it more effective for dermatophytosis treatment.
Methods: Carbomer 940 and α-pinene were used as model thickening agent and antifungal, respectively. A series of α-pinene NGs (αNG1, αNG2, αNG3) containing 0.
Appl Microbiol Biotechnol
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan.
: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!