Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease.

J Biol Chem

Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany. Electronic address:

Published: July 2024

Together with its β-subunit OSTM1, ClC-7 performs 2Cl/H exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail different sets of symptoms. Loss of ClC-7 causes osteopetrosis and mostly neuronal lysosomal storage. A recently reported de novo CLCN7 mutation (p.Tyr715Cys) causes widespread severe lysosome pathology (hypopigmentation, organomegaly, and delayed myelination and development, "HOD syndrome"), but no osteopetrosis. We now describe two additional HOD individuals with the previously described p.Tyr715Cys and a novel p.Lys285Thr mutation, respectively. Both mutations decreased ClC-7 inhibition by PI(3,5)P and affected residues lining its binding pocket, and shifted voltage-dependent gating to less positive potentials, an effect partially conferred to WT subunits in WT/mutant heteromers. This shift predicts augmented pH gradient-driven Cl uptake into vesicles. Overexpressing either mutant induced large lysosome-related vacuoles. This effect depended on Cl/H-exchange, as shown using mutants carrying uncoupling mutations. Fibroblasts from the p.Y715C patient also displayed giant vacuoles. This was not observed with p.K285T fibroblasts probably due to residual PI(3,5)P sensitivity. The gain of function caused by the shifted voltage-dependence of either mutant likely is the main pathogenic factor. Loss of PI(3,5)P inhibition will further increase current amplitudes, but may not be a general feature of HOD. Overactivity of ClC-7 induces pathologically enlarged vacuoles in many tissues, which is distinct from lysosomal storage observed with the loss of ClC-7 function. Osteopetrosis results from a loss of ClC-7, but osteoclasts remain resilient to increased ClC-7 activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261146PMC
http://dx.doi.org/10.1016/j.jbc.2024.107437DOI Listing

Publication Analysis

Top Keywords

lysosomal storage
16
loss clc-7
12
clc-7
7
lysosomal
5
gain-of-function variants
4
variants clcn7
4
clcn7 hypopigmentation
4
hypopigmentation lysosomal
4
storage
4
storage disease
4

Similar Publications

RpH-ILV: Probe for lysosomal pH and acute LLOMe-induced membrane permeabilization in cell lines and .

Sci Adv

January 2025

Department of Biochemistry Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.

Lysosomal pH dysregulation is a critical element of the pathophysiology of neurodegenerative diseases, cancers, and lysosomal storage disorders (LSDs). To study the role of lysosomes in pathophysiology, probes to analyze lysosomal size, positioning, and pH are indispensable tools. Here, we developed and characterized a ratiometric genetically encoded lysosomal pH probe, RpH-ILV, targeted to a subpopulation of lysosomal intraluminal vesicles.

View Article and Find Full Text PDF

Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers.

View Article and Find Full Text PDF

CLN2 disease (late infantile neuronal ceroid lipofuscinosis) is an autosomal recessive, neurodegenerative lysosomal storage disease that results from loss of function mutations in the gene, which encodes tripeptidyl peptidase 1. It affects the central nervous system (CNS) with progressive neurodegeneration and early death, typically at ages from 8 to 12 years. Twenty years ago, our phase I clinical trial treated subjects with CLN2 disease by a catheter-based CNS administration of an adeno-associated virus vector serotype 2 (AAV2) expressing the gene.

View Article and Find Full Text PDF

Fabry disease (FD) belongs to the group of lysosomal storage diseases (LSD), which are characterised by insufficient activity of enzymes responsible for the intra-lysosomal breakdown of various substrates. The result is an uncontrolled accumulation of by-products of cellular metabolism. Lysosomal storage diseases are inherited diseases, transmitted mainly in an autosomal recessive fashion.

View Article and Find Full Text PDF

Free sialic acid storage disorder (FSASD) is a rare autosomal recessive lysosomal storage disease caused by pathogenic SLC17A5 variants with variable disease severity. We performed a multidisciplinary evaluation of an adolescent female with suspected lysosomal storage disease and conducted comprehensive studies to uncover the molecular etiology. The proband exhibited intellectual disability, a storage disease gestalt, and mildly elevated urine free sialic acid levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!