An electrochemiluminescence (ECL) biosensor based on ECL resonance energy transfer (ECL-RET) was designed to sensitively detect hepatitis B virus surface antigen (HBsAg). In this ECL-RET system, luminol was employed as ECL donor, and gold nanoparticles functionalized zirconium organoskeleton (UiO-66-NH@Au) was prepared and served as ECL acceptor. The UiO-66-NH@Au possessed an ultraviolet-visible (UV-vis) absorption between 400 nm and 500 nm, and the absorption spectra overlapped with the ECL spectrum of luminol. Furthermore, Graphene oxide-poly(aniline-luminol)-cobalt nanoparticles conjugates (GO-PALu-Co) was prepared to optimize the ECL behavior through the catalysis of Cobalt nanoparticles and served as a stable 3D porous film to load capture probe primary antibody (Ab). Based on the ECL-RET biosensing method, the UiO-66-NH@Au-labeled Ab and target HBsAg could pair with primary antibody Ab to form sandwich-type structure, and the ECL signal of GO-PALu-Co was quenched. Under optimized experimental conditions, the ECL-RET analytical method represented eminent analytical performance for HBsAg detection with a wide linear relationship from 2.2 × 10 to 2.2 × 10 mg/mL, and a detection limit of 9 × 10 mg/mL (S/N = 3), with spiked sample recoveries ranging from 97.27 % to 102.73 %. The constructed sensor has good stability, reproducibility, and specificity. It can be used to detect HBsAg in human serum and has the potential to be used for the sensitive detection of other disease biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.124574 | DOI Listing |
Int J Cardiol Congenit Heart Dis
September 2024
National Pulmonary Hypertension Centre, Royal Papworth Hospital, UK.
Chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) occurs when thromboemboli in pulmonary arteries fail to resolve completely. Pulmonary artery obstructions due to chronic thrombi and secondary microvasculopathy can increase pulmonary arterial pressure and resistance leading to chronic thromboembolic PH (CTEPH). Mechanical interventions and/or PH medications can improve cardiopulmonary haemodynamic, alleviate symptoms, and decrease mortality risk.
View Article and Find Full Text PDFNanoscale
December 2024
College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
A chiral agent, TPE-ASP, incorporating aspartic acid as the chiral source and tetraphenylene derivatives as chromophores, was designed and synthesized. The chiral agent was self-assembled into regular spherical nanoparticles with a maximum luminescence asymmetry factor of |2.41 × 10| at 460 nm which is attributed to TPE-ASP.
View Article and Find Full Text PDFAnal Chem
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
Nowadays, optical tweezers play a vital role not only in optical manipulation but also in bioassay. As principal optical trapping objects, microbeads can combine optical tweezers with suspension array technology, with amply focused laser beams and adequately concentrated tags contributing to highly sensitive detection. In view of the inefficiency of conventional single-trap optical tweezers, multitrap systems are developed.
View Article and Find Full Text PDFAutophagy
December 2024
Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
Immune checkpoint inhibitors, especially those targeting CD274/PD-L1yield powerful clinical therapeutic efficacy. Thoughmuch progress has been made in the development of antibody-basedCD274 drugs, chemical compounds applied for CD274degradation remain largely unavailable. Herein,baicalein, a monomer of traditional Chinese medicine, isscreened and validated to target CD274 and induces itsmacroautophagic/autophagic degradation.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA. Electronic address:
The sarco(endo)plasmic reticulum Ca ATPase (SERCA) is a membrane transporter that creates and maintains intracellular Ca stores. In the heart, SERCA is regulated by an inhibitory interaction with the monomeric form of the transmembrane micropeptide phospholamban (PLB). PLB also forms avid homo-pentamers, and dynamic exchange of PLB between pentamers and SERCA is an important determinant of cardiac responsiveness to exercise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!