Hazardous element inertisation in vitrified silicate ceramics: Effect of different matrices.

J Hazard Mater

CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, Italy.

Published: August 2024

The ceramic industry is a production sector that can efficiently recycle its own processing residues, achieving a reuse index of almost 100%. Recently, the range of waste from other industrial sectors that can be used as secondary raw materials in ceramic bodies has expanded. However, such an expansion potentially introduces hazardous components. This study aimed to quantitatively assess the efficiency of inertising hazardous elements (HEs) through ceramisation. The ceramics were characterised through XRPD, SEM-EDS and leaching tests to determine their leaching behaviour and the mechanisms of element immobilisation in neoformation phases during the ceramisation process. The results indicate high immobilisation efficiency for Ba, Co, Cr, Cu, Pb, Sb, Sn and Zn. However, Mo is the main element of concern owing to its poor retention in ceramic bodies. This is likely due to the formation of oxyanionic complexes that are difficult to immobilise in silicate matrices. In addition, the ceramic bodies exhibit substantial differences that appear to be associated with variations in pseudo-structural components and the degree of polymerisation of their vitreous phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134657DOI Listing

Publication Analysis

Top Keywords

ceramic bodies
12
hazardous element
4
element inertisation
4
inertisation vitrified
4
vitrified silicate
4
silicate ceramics
4
ceramics matrices
4
ceramic
4
matrices ceramic
4
ceramic industry
4

Similar Publications

Contrary to short-lived plasma cells, which survive only 3-5 days, long-lived plasma cells (LLPCs) contribute to the humoral memory of the body and thus also to many antibody-related diseases. The ability of plasma cells to persist over months, years, and even a lifetime has been demonstrated in vivo. Yet, the in vitro culture of human primary bone marrow-derived plasma cells has been limited to a few days.

View Article and Find Full Text PDF

Benchtop Machining of Self-Standing Alumina Doughs for Low-Number Fabrication and Prototyping.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.

Cold isostatic pressing, gel casting, and protein coagulation are the most common techniques to produce green bodies prior to computer numerical control (CNC)-based machining for the near-net-scale shaping of ceramics. These methods typically involve various additives and entail several steps to create a green body that is capable of withstanding machining forces. Here, utilizing a single additive, we first introduced a facile benchtop method to generate self-standing, malleable doughs of alumina in under 2 min.

View Article and Find Full Text PDF

Piezoelectric materials are increasingly used in portable smart electronics and Internet of Things sensors. Among them, piezoelectric macro fiber composites (MFCs) have attracted much attention due to their architectural simplicity, scalability, and high-power density. However, most MFCs currently use toxic lead-based piezoelectric materials, hindering their applications for bio-friendly intelligent electronics.

View Article and Find Full Text PDF

This work presents a review of the therapeutic modalities and approaches for cancer treatment. A brief overview of the traditional treatment routes is presented in the introduction together with their reported side effects. A combination of the traditional approaches was reported to demonstrate an effective therapy until a few decades ago.

View Article and Find Full Text PDF

Bioactive glasses and glass-ceramics exhibit osteoconductivity, which is the ability to form a direct bond with living bone tissue. This property is typically assessed by observing the formation of a hydroxyapatite layer using simulated body fluid (SBF), a solution designed to mimic the inorganic constituents of human blood plasma. SBF was developed by Kokubo (T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!