Purpose: Identification of those at risk of hereditary cancer syndromes using electronic health record (EHR) data sources is important for clinical care, quality improvement, and research. We describe diagnostic processes, previously seldom reported, for a common hereditary cancer syndrome, Lynch syndrome (LS), using EHR data within a community-based, multicenter, demographically diverse health system.
Methods: Within a retrospective cohort enrolled between 2015 and 2020 at Kaiser Permanente Northern California, we assessed electronic diagnostic domains for LS including (1) family history of LS-associated cancer; (2) personal history of LS-associated cancer; (3) LS screening via mismatch repair deficiency (MMRD) testing of newly diagnosed malignancy; (4) germline genetic test results; and (5) clinician-entered diagnostic codes for LS. We calculated proportions and overlap for each diagnostic domain descriptively.
Results: Among 5.8 million individuals, (1) 28,492 (0.49%) had a family history of LS-associated cancer of whom 3,635 (13%) underwent genetic testing; (2) 100,046 (1.7%) had a personal history of a LS-associated cancer; and (3) 8,711 (0.1%) were diagnosed with colorectal cancer of whom 7,533 (86%) underwent MMRD screening and of the positive screens (486), 130 (27%) underwent germline testing. One thousand seven hundred and fifty-seven (0.03%) were diagnosed with endometrial cancer of whom 1,613 (92%) underwent MMRD screening and of the 195 who screened positive, 55 (28%) underwent genetic testing. (4) 30,790 (0.05%) had LS germline genetic testing with 707 (0.01%) testing positive; and (5) 1,273 (0.02%) had a clinician-entered diagnosis of LS.
Conclusion: It is feasible to electronically characterize the diagnostic processes of LS. No single data source comprehensively identifies all LS carriers. There is underutilization of LS genetic testing for those eligible and underdiagnosis of LS. Our work informs similar efforts in other settings for hereditary cancer syndromes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1200/CCI.23.00157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!