Reducing carbon emission intensity is crucial for achieving sustainable development. Carbon emission intensity is expressively affected by the issuance of green bonds. Thus, it is imperative to assess the influence of green bond issuance on carbon emissions and examine their correlation. Such research holds great potential to expedite the overhaul and modernization of businesses and to construct a circular economy system. This paper uses the spatial Durbin model to draw empirical conclusions by using data from 26 provinces in China between 2016 and 2021. Firstly, under different spatial matrices, it has been analyzed that an increase of 1% in the issuance of green bonds leads to a reduction of 0.306% or 0.331% in carbon emission intensity. It shows that green bonds have the potential to substantially reduce carbon intensity. Additionally, the intensity of emissions in the current period is driven by the intensity of emissions in the previous period. Secondly, the analysis of mediated transmission suggests that green bonds can ultimately reduce carbon emission intensity by changing the energy consumption structure or improving the efficiency of green technology innovation. Thirdly, the analysis of heterogeneity shows that the inhibitory effect of green bond issuance on carbon emissions is stronger in less economically developed regions than in economically developed regions. There is a significant inhibitory effect of green bond issuance in neighboring provinces on local carbon emission intensity. This effect is present only in provinces in less economically developed regions and not in economically developed regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152263PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304364PLOS

Publication Analysis

Top Keywords

carbon emission
24
emission intensity
24
green bond
16
bond issuance
16
green bonds
16
economically developed
16
developed regions
16
issuance carbon
12
carbon
9
intensity
9

Similar Publications

Temperature seasonality regulates organic carbon burial in lake.

Nat Commun

January 2025

Laboratoire des Sciences du Climat et de l' Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.

Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Efficient luminescent solar concentrators based on solvent polarity induced multiple-colored carbon dots.

J Colloid Interface Sci

January 2025

State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 PR China. Electronic address:

Luminescent solar concentrators (LSCs) are large scale sunlight collector and can be used for building-integrated photovoltaics (BIPV). Achieving high-performance LSCs requires fluorophores with broad absorption, high quantum yield and a large Stokes shift. Nevertheless, conventional high-efficiency LSCs typically rely on heavy metal-based quantum dots as fluorophores.

View Article and Find Full Text PDF

Biofiltration for odor mitigation in water resource recovery facilities.

Sci Total Environ

January 2025

Department of Civil Engineering, City College of New York, New York, NY 10031, United States.

Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards.

View Article and Find Full Text PDF

Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review.

Ecotoxicol Environ Saf

January 2025

College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.

Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!