Medical image segmentation and registration are two fundamental and highly related tasks. However, current works focus on the mutual promotion between the two at the loss function level, ignoring the feature information generated by the encoder-decoder network during the task-specific feature mapping process and the potential inter-task feature relationship. This paper proposes a unified multi-task joint learning framework based on bi-fusion of structure and deformation at multi-scale, called BFM-Net, which simultaneously achieves the segmentation results and deformation field in a single-step estimation. BFM-Net consists of a segmentation subnetwork (SegNet), a registration subnetwork (RegNet), and the multi-task connection module (MTC). The MTC module is used to transfer the latent feature representation between segmentation and registration at multi-scale and link different tasks at the network architecture level, including the spatial attention fusion module (SAF), the multi-scale spatial attention fusion module (MSAF) and the velocity field fusion module (VFF). Extensive experiments on MR, CT and ultrasound images demonstrate the effectiveness of our approach. The MTC module can increase the Dice scores of segmentation and registration by 3.2%, 1.6%, 2.2%, and 6.2%, 4.5%, 3.0%, respectively. Compared with six state-of-the-art algorithms for segmentation and registration, BFM-Net can achieve superior performance in various modal images, fully demonstrating its effectiveness and generalization.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2024.3407657DOI Listing

Publication Analysis

Top Keywords

segmentation registration
20
fusion module
12
bi-fusion structure
8
structure deformation
8
deformation multi-scale
8
mtc module
8
spatial attention
8
attention fusion
8
segmentation
7
registration
6

Similar Publications

Background: Depressive symptom is the most common type of psychiatric co-morbidity among persons with epilepsy. Epilepsy patients are identified as at higher risk of suffering depressive symptom explicitly in low- and middle-income countries due to poor mental health care systems and financial burdens. The co-occurrence of depressive symptom among epilepsy patients deteriorates the prognosis of the disease and diminishes the quality of life of both the patients and their families.

View Article and Find Full Text PDF

With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered.

View Article and Find Full Text PDF

Background: Accurate body fat distribution assessment is essential for managing cardiovascular disease and metabolic disorders. Although several methods are available for segmental fat analysis, few studies have examined the validity of affordable methods such as Bioelectrical Impedance Analysis (BIA) against the reference method, Dual-Energy X-ray Absorptiometry (DXA). This study aimed to assess the validity of BIA as compared to DXA for segmental fat mass assessment, and to develop anthropometric multivariate regression models that offer a cost-effective alternative for health professionals in clinical and public health settings.

View Article and Find Full Text PDF

Unveiling the role of artificial intelligence applied to clear aligner therapy: A scoping review.

J Dent

January 2025

OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals, Campus Sint-Rafael, 3000 Leuven, Belgium; Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden. Electronic address:

Objectives: To conduct a scoping review on the application of artificial intelligence (AI) in clear aligner therapy and to assess the extent of AI integration and automation in orthodontic software currently available to orthodontists.

Data And Sources: A systematic electronic literature search was performed in the following databases: PubMed, Embase, Web of Science, Cochrane Library, and Scopus. Also, grey literature resources up to March 2024 were reviewed.

View Article and Find Full Text PDF

Automated Lesion and Feature Extraction Pipeline for Brain MRIs with Interpretability.

Neuroinformatics

January 2025

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.

This paper introduces the Automated Lesion and Feature Extraction (ALFE) pipeline, an open-source, Python-based pipeline that consumes MR images of the brain and produces anatomical segmentations, lesion segmentations, and human-interpretable imaging features describing the lesions in the brain. ALFE pipeline is modeled after the neuroradiology workflow and generates features that can be used by physicians for quantitative analysis of clinical brain MRIs and for machine learning applications. The pipeline uses a decoupled design which allows the user to customize the image processing, image registrations, and AI segmentation tools without the need to change the business logic of the pipeline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!