The multiple-choice knapsack problem (MCKP) is a classic NP-hard combinatorial optimization problem. Motivated by several significant real-world applications, this work investigates a novel variant of MCKP called the chance-constrained MCKP (CCMCKP), where item weights are random variables. In particular, we focus on the practical scenario of CCMCKP, in which the probability distributions of random weights are unknown and only sample data is available. We first present the problem formulation of CCMCKP and then establish the two benchmark sets. The first set contains synthetic instances, while the second set is designed to simulate a real-world application scenario of a telecommunication company. To solve CCMCKP, we propose a data-driven adaptive local search (DDALS) algorithm. Compared to existing stochastic optimization and distributionally robust optimization methods, the main novelty of DDALS lies in its data-driven solution evaluation approach, which does not make any assumptions about the underlying distributions and is highly effective even when faced with a high intensity of the chance constraint and a limited amount of sample data. Experimental results demonstrate the superiority of DDALS over the baselines on both the benchmarks. Finally, DDALS can serve as the baseline for future research, and the benchmark sets are open-sourced to further promote research on this challenging problem.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2024.3402395DOI Listing

Publication Analysis

Top Keywords

multiple-choice knapsack
8
knapsack problem
8
sample data
8
benchmark sets
8
problem
5
chance-constrained multiple-choice
4
problem model
4
model algorithms
4
algorithms applications
4
applications multiple-choice
4

Similar Publications

The multiple-choice knapsack problem (MCKP) is a classic NP-hard combinatorial optimization problem. Motivated by several significant real-world applications, this work investigates a novel variant of MCKP called the chance-constrained MCKP (CCMCKP), where item weights are random variables. In particular, we focus on the practical scenario of CCMCKP, in which the probability distributions of random weights are unknown and only sample data is available.

View Article and Find Full Text PDF

Land managers decide how to allocate resources among multiple threats that can be addressed through multiple possible actions. Additionally, these actions vary in feasibility, effectiveness, and cost. We sought to provide a way to optimize resource allocation to address multiple threats when multiple management options are available, including mutually exclusive options.

View Article and Find Full Text PDF

The problem of pollution control has been mainly studied in the environmental economics literature where the methodology of game theory is applied for the pollution control. To the best of our knowledge this is the first time this problem is studied from the computational point of view. We introduce a new network model for pollution control and present two applications of this model.

View Article and Find Full Text PDF

Automated partial atomic charge assignment for drug-like molecules: a fast knapsack approach.

Algorithms Mol Biol

February 2019

1Algorithmic Bioinformatics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.

A key factor in computational drug design is the consistency and reliability with which intermolecular interactions between a wide variety of molecules can be described. Here we present a procedure to efficiently, reliably and automatically assign partial atomic charges to atoms based on known distributions. We formally introduce the molecular charge assignment problem, where the task is to select a charge from a set of candidate charges for every atom of a given query molecule.

View Article and Find Full Text PDF

In this paper, we work on a Cache and Multi-layer MEC enabled C-RAN (CMM-CRAN) to handle various user tasks with minimized latency and energy cost. We intend to solve two particular problems of CMM-CRAN. First, because CMM-CRAN has to maximally cache the most frequently requested data from Service Provide Server (SPS) to Remote Radio Head (RRH) and later offered to proximity mobile users, the cache content placement from SPSs to RRHs becomes a many-to-many matching problem with peer effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!