Janus-micromotors, as efficient self-propelled materials, have garnered considerable attention for their potential applications in non-agitated liquids. However, the design of micromotors is still challenging and with limited approaches, especially concerning speed and mobility in complex environments. Herein, a two-step spray-drying approach encompassing symmetrical assembly and asymmetrical assembly is introduced to fabricate the metal-organic framework (MOF) Janus-micromotors with hierarchical pores. Using a spray-dryer, a symmetrical assembly is first employed to prepare macro-meso-microporous UiO-66 with intrinsic micropores (<0.5 nm) alongside mesopores (≈24 nm) and macropores (≈400 nm). Subsequent asymmetrical assembly yielded the UiO-66-Janus loaded with the reducible nanoparticles, which underwent oxidation by KMnO to form MnO micromotors. The micromotors efficiently generated O for self-propulsion in HO, exhibiting ultrahigh speeds (1135 µm s, in a 5% HO solution) and unique anti-gravity diffusion effects. In a specially designed simulated sand-water system, the micromotors traversed from the lower water to the upper water through the sand layer. In particular, the as-prepared micromotors demonstrated optimal efficiency in pollutant removal, with an adsorption kinetic coefficient exceeding five times that of the micromotors only possessing micropores and mesopores. This novel strategy fabricating Janus-micromotors shows great potential for efficient treatment in complex environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202402819 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, lihu road 1800#, 214122, Wuxi, CHINA.
Circularly polarized luminescence (CPL) has garnered significant research attention. Achieving a high luminescence dissymmetry factor (glum) is a key challenge in this field. Herein, we reported, for the first time, the fabrication of a chiral assembled film consisting of chiral D-/L-Selenium nanoparticles (D-/L-Se NPs) and DSPE-PEG-NH2 modified upconversion nanoparticles (DPNUCNPs) with remarkable CPL properties that were generated by the interfacial self-assembly technique.
View Article and Find Full Text PDFMol Genet Metab Rep
December 2024
Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Background: Variants in have been reported to be associated with Leigh syndrome. However, further expansion of the -phenotype and variants spectrum of -related Leigh syndrome are still required.
Methods: Two patients diagnosed with Leigh syndrome were recruited, and whole-exome sequencing was performed to identify the genetic variants responsible for the abnormal gait, dystonia, and bilateral basal ganglia lesions, followed by validation using Sanger sequencing.
J Phys Condens Matter
December 2024
Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, GERMANY.
We study analytically the dynamics of an anisotropic particle subjected to different stochastic resetting schemes in two dimensions. The Brownian motion of shape-asymmetric particles in two dimensions results in anisotropic diffusion at short times, while the late-time transport is isotropic due to rotational diffusion. We show that the presence of orientational resetting promotes the anisotropy to late times.
View Article and Find Full Text PDFNano Lett
December 2024
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
Over the last three decades, colloidal crystallization has provided an easy-to-craft platform for mesoscale engineering of photonic and phononic crystals. Nevertheless, the crystal lattices achieved thus far with commodity colloids are largely limited to symmetric and densely packed structures, restricting their functionalities. To obtain non-close-packed crystals and the resulting complexity of the available structures, directional binding between "patchy" colloids has been pursued.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
Pseudosymmetric hetero-oligomers with three or more unique subunits with overall structural (but not sequence) symmetry play key roles in biology, and systematic approaches for generating such proteins de novo would provide new routes to controlling cell signaling and designing complex protein materials. However, the de novo design of protein hetero-oligomers with three or more distinct chains with nearly identical structures is a challenging unsolved problem because it requires the accurate design of multiple protein-protein interfaces simultaneously. Here, we describe a divide-and-conquer approach that breaks the multiple-interface design challenge into a set of more tractable symmetric single-interface redesign tasks, followed by structural recombination of the validated homo-oligomers into pseudosymmetric hetero-oligomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!