A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flexible Aqueous Cr-Ion Hybrid Supercapacitors with Remarkable Electrochemical Properties in all Climates. | LitMetric

The integration of hostless battery-like metal anodes for hybrid supercapacitors is a realistic design method for energy storage devices with promising future applications. With significant Cr element deposits on Earth, exceptionally high theoretical capacity (1546 mAh g), and accessible redox potential (-0.74 V vs. reversible hydrogen electrode) of Cr metals, the design of Cr anodes has rightly come into our focus. This work presents a breakthrough design of a flexible Cr-ion hybrid supercapacitor (CHSC) based on a porous graphitized carbon fabric (PGCF) substrate prepared by KFeO activation. In the CHSC device, PGCF acts as both a current collector and cathode material due to its high specific surface area and superior conductivity. The use of a highly concentrated LiCl-CrCl electrolyte with high Cr plating/stripping efficiency and excellent antifreeze properties enables the entire PGCF-based CHSC to achieve well-balanced performance in terms of energy density (up to 1.47 mWh cm), power characteristics (reaching 9.95 mW cm) and durability (95.4 % capacity retention after 30,000 cycles), while realizing it to work well under harsh conditions of -40 °C. This work introduces a new concept for low-temperature energy storage technology and confirms the potential application of Cr anodes in hybrid supercapacitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202408569DOI Listing

Publication Analysis

Top Keywords

hybrid supercapacitors
12
cr-ion hybrid
8
anodes hybrid
8
energy storage
8
flexible aqueous
4
aqueous cr-ion
4
hybrid
4
supercapacitors remarkable
4
remarkable electrochemical
4
electrochemical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!