The majority of mitochondrial proteins are encoded in the nucleus, translated on cytosolic ribosomes, and subsequently targeted to the mitochondrial surface. Their further import into the organelle is facilitated by highly specialized protein translocases. Mitochondrial precursor proteins that are destined to the mitochondrial matrix and, to some extent, the inner membrane, utilize translocase of the inner membrane (TIM23). This indispensable import machinery has been extensively studied in yeast. The translocating unit of the TIM23 complex in yeast consists of two membrane proteins, Tim17 and Tim23. In contrast to previous findings, recent reports demonstrate the primary role of Tim17, rather than Tim23, in the translocation of newly synthesized proteins. Very little is known about human TIM23 translocase. Human cells have two orthologs of yeast Tim17, TIMM17A and TIMM17B. Here, using computational tools, we present the architecture of human core TIM23 variants with either TIMM17A or TIMM17B, forming two populations of highly similar complexes. The structures reveal high conservation of the core TIM23 complex between human and yeast. Interestingly, both TIMM17A and TIMM17B variants interact with TIMM23 and reactive oxygen species modulator 1 (ROMO1); a homolog of yeast Mgr2, a protein that can create a channel-like structure with Tim17. The high structural conservation of proteins that form the core TIM23 complex in yeast and humans raises an interesting question about mechanistic and functional differences that justify existence of the two variants of TIM23 in higher eukaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452300PMC
http://dx.doi.org/10.1002/2211-5463.13840DOI Listing

Publication Analysis

Top Keywords

core tim23
16
tim23 complex
16
timm17a timm17b
12
tim23
10
human core
8
inner membrane
8
complex yeast
8
tim17 tim23
8
yeast
6
human
5

Similar Publications

Biochemical and neurophysiological effects of deficiency of the mitochondrial import protein TIMM50.

Elife

December 2024

School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome.

View Article and Find Full Text PDF

Allotopic expression refers to the artificial relocation of an organellar gene to the nucleus. Subunit 2 (Cox2) of cytochrome c oxidase, a subunit with two transmembrane domains (TMS1 and TMS2) residing in the inner mitochondrial membrane with a Nout-Cout topology, is typically encoded in the mitochondrial cox2 gene. In the yeast Saccharomyces cerevisiae, the cox2 gene can be allotopically expressed in the nucleus, yielding a functional protein that restores respiratory growth to a Δcox2 null mutant.

View Article and Find Full Text PDF

OCIAD1 and prohibitins regulate the stability of the TIM23 protein translocase.

Cell Rep

December 2024

IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland. Electronic address:

Article Synopsis
  • - The presequence translocase TIM23 is crucial for transporting mitochondrial proteins into the matrix or inner membrane, with its core components being Tim23 and Tim17, but the details of the human TIM23 complex are not well understood.
  • - Both TIMM17A and TIMM17B, the human equivalents of Tim17, are regulated by the prohibitin complex, which is necessary for stabilizing these variants.
  • - The study highlights the role of OCIAD1 in working with prohibitins to protect the TIMM17A variant from degradation, suggesting an important regulatory relationship between OCIAD1, prohibitins, and the TIM23 complex.
View Article and Find Full Text PDF

The majority of mitochondrial proteins are encoded in the nucleus, translated on cytosolic ribosomes, and subsequently targeted to the mitochondrial surface. Their further import into the organelle is facilitated by highly specialized protein translocases. Mitochondrial precursor proteins that are destined to the mitochondrial matrix and, to some extent, the inner membrane, utilize translocase of the inner membrane (TIM23).

View Article and Find Full Text PDF

TIMM50 is a core subunit of the TIM23 complex, the mitochondrial inner membrane translocase responsible for the import of pre-sequence-containing precursors into the mitochondrial matrix and inner membrane. Here we describe a mitochondrial disease patient who is homozygous for a novel variant in and establish the first proteomic map of mitochondrial disease associated with TIMM50 dysfunction. We demonstrate that TIMM50 pathogenic variants reduce the levels and activity of endogenous TIM23 complex, which significantly impacts the mitochondrial proteome, resulting in a combined oxidative phosphorylation (OXPHOS) defect and changes to mitochondrial ultrastructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!