The majority of mitochondrial proteins are encoded in the nucleus, translated on cytosolic ribosomes, and subsequently targeted to the mitochondrial surface. Their further import into the organelle is facilitated by highly specialized protein translocases. Mitochondrial precursor proteins that are destined to the mitochondrial matrix and, to some extent, the inner membrane, utilize translocase of the inner membrane (TIM23). This indispensable import machinery has been extensively studied in yeast. The translocating unit of the TIM23 complex in yeast consists of two membrane proteins, Tim17 and Tim23. In contrast to previous findings, recent reports demonstrate the primary role of Tim17, rather than Tim23, in the translocation of newly synthesized proteins. Very little is known about human TIM23 translocase. Human cells have two orthologs of yeast Tim17, TIMM17A and TIMM17B. Here, using computational tools, we present the architecture of human core TIM23 variants with either TIMM17A or TIMM17B, forming two populations of highly similar complexes. The structures reveal high conservation of the core TIM23 complex between human and yeast. Interestingly, both TIMM17A and TIMM17B variants interact with TIMM23 and reactive oxygen species modulator 1 (ROMO1); a homolog of yeast Mgr2, a protein that can create a channel-like structure with Tim17. The high structural conservation of proteins that form the core TIM23 complex in yeast and humans raises an interesting question about mechanistic and functional differences that justify existence of the two variants of TIM23 in higher eukaryotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452300 | PMC |
http://dx.doi.org/10.1002/2211-5463.13840 | DOI Listing |
Elife
December 2024
School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
Allotopic expression refers to the artificial relocation of an organellar gene to the nucleus. Subunit 2 (Cox2) of cytochrome c oxidase, a subunit with two transmembrane domains (TMS1 and TMS2) residing in the inner mitochondrial membrane with a Nout-Cout topology, is typically encoded in the mitochondrial cox2 gene. In the yeast Saccharomyces cerevisiae, the cox2 gene can be allotopically expressed in the nucleus, yielding a functional protein that restores respiratory growth to a Δcox2 null mutant.
View Article and Find Full Text PDFCell Rep
December 2024
IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland. Electronic address:
FEBS Open Bio
October 2024
IMol Polish Academy of Sciences, Warsaw, Poland.
The majority of mitochondrial proteins are encoded in the nucleus, translated on cytosolic ribosomes, and subsequently targeted to the mitochondrial surface. Their further import into the organelle is facilitated by highly specialized protein translocases. Mitochondrial precursor proteins that are destined to the mitochondrial matrix and, to some extent, the inner membrane, utilize translocase of the inner membrane (TIM23).
View Article and Find Full Text PDFMol Cell Biol
June 2024
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
TIMM50 is a core subunit of the TIM23 complex, the mitochondrial inner membrane translocase responsible for the import of pre-sequence-containing precursors into the mitochondrial matrix and inner membrane. Here we describe a mitochondrial disease patient who is homozygous for a novel variant in and establish the first proteomic map of mitochondrial disease associated with TIMM50 dysfunction. We demonstrate that TIMM50 pathogenic variants reduce the levels and activity of endogenous TIM23 complex, which significantly impacts the mitochondrial proteome, resulting in a combined oxidative phosphorylation (OXPHOS) defect and changes to mitochondrial ultrastructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!