Methacrylated biopolymers are unique and attractive in preparing photocrosslinkable hydrogels in biomedical applications. Here we report a novel chitosan (CS) derivative-based injectable hydrogel with anti-inflammatory capacity via methacrylation modification. First, ibuprofen (IBU) was conjugated to the backbone of CS by carbodiimide chemistry to obtain IBU-CS conjugate, which converts water-insoluble unmodified CS into water-soluble IBU-CS conjugate. The IBU-CS conjugate did not precipitate at the pH of 7, which was beneficial to subsequent chemical modification with methacrylic anhydride to prepare IBU-CS methacrylate (IBU-CS-MA) with significantly higher methacrylation substitution. Photocrosslinkable in situ gel formation of injectable IBU-CS-MA hydrogel was verified using lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) initiator under visible light. The IBU-CS-MA hydrogel showed good cytocompatibility as revealed by encapsulating and in vitro culturing murine fibroblasts within hydrogels. It promoted macrophage polarization toward M2 phenotype, as well as downregulated pro-inflammatory gene expression and upregulated anti-inflammatory gene expression of macrophages. The hydrogel also significantly reduced the reactive oxygen specifies (ROS) and nitrogen oxide (NO) produced by lipopolysaccharides (LPS)-stimulated macrophages. Upon subcutaneous implantation in a rat model, it significantly mitigated inflammatory responses as shown by significantly lower inflammatory cell density, less cell infiltration, and much thinner fibrous capsule compared with CS methacrylate (CS-MA) hydrogel. This study suggests that IBU-CS conjugate represents a feasible strategy for preparing CS-based methacrylate hydrogels for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!