Thermal insulation under extreme conditions requires the materials to be capable of withstanding complex thermo-mechanical stress, significant gradient temperature transition, and high-frequency thermal shock. The excellent structural and functional properties of ceramic aerogels make them attractive for thermal insulation. However, in extremely high-temperature environments (above 1500 °C), they typically exhibit limited insulation capacity and thermo-mechanical stability, which may lead to catastrophic accidents, and this problem is never effectively addressed. Here, a novel ceramic meta-aerogel constructed from a crosslinked nanofiber network using a reaction electrospinning strategy, which ensures excellent thermo-mechanical stability and superinsulation under extreme conditions, is designed. The ceramic meta-aerogel has an ultralow thermal conductivity of 0.027 W m k, and the cold surface temperature is only 303 °C in a 1700 °C high-temperature environment. After undergoing a significant gradient temperature transition from liquid nitrogen to 1700 °C flame burning, the ceramic meta-aerogel can still withstand thousands of shears, flexures, compressions, and other complex forms of mechanical action without structural collapse. This work provides a new insight for developing ceramic aerogels that can be used for a long period in extremely high-temperature environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202401299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!