We propose silver oxide as a cost-effective and sustainable alternative to noble metals for the catalytic reduction of nitroaromatics. In the present investigation, we adopt a facile and green synthetic route for the synthesis of silver oxide nanostructures. The prepared nanostructures were found to crystallize in the cuprite phase and exhibit absorbance across the entire visible range of the electromagnetic spectrum. The catalytic potential of the silver oxide was evaluated by following the kinetics of nitrophenol reduction under ambient conditions and is observed to follow pseudo-first order kinetics with the apparent rate constant s at minimum concentration of the catalyst. We attribute the observed catalytic activity to the freshly generated catalytic surface featuring a partially reduced form of silver oxide during reaction. The findings highlight the efficacy of silver oxide in mitigating the environmental pollution originating from the recalcitrant nitroarenes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202401637DOI Listing

Publication Analysis

Top Keywords

silver oxide
24
nitrophenol reduction
8
oxide nanostructures
8
silver
6
oxide
6
reduction silver
4
nanostructures sustainable
4
sustainable approach
4
approach environmental
4
environmental remediation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!