Applications of machine learning in urodynamics: A narrative review.

Neurourol Urodyn

School of Rehabilitation, Capital Medical University, Beijing, China.

Published: September 2024

Background: Machine learning algorithms as a research tool, including traditional machine learning and deep learning, are increasingly applied to the field of urodynamics. However, no studies have evaluated how to select appropriate algorithm models for different urodynamic research tasks.

Methods: We undertook a narrative review evaluating how the published literature reports the applications of machine learning in urodynamics. We searched PubMed up to December 2023, limited to the English language. We selected the following search terms: artificial intelligence, machine learning, deep learning, urodynamics, and lower urinary tract symptoms. We identified three domains for assessment in advance of commencing the review. These were the applications of urodynamic studies examination, applications of diagnoses of dysfunction related to urodynamics, and applications of prognosis prediction.

Results: The machine learning algorithm applied in the field of urodynamics can be mainly divided into three aspects, which are urodynamic examination, diagnosis of urinary tract dysfunction and prediction of the efficacy of various treatment methods. Most of these studies were single-center retrospective studies, lacking external validation, requiring further validation of model generalization ability, and insufficient sample size. The relevant research in this field is still in the preliminary exploration stage; there are few high-quality multi-center clinical studies, and the performance of various models still needs to be further optimized, and there is still a distance from clinical application.

Conclusions: At present, there is no research to summarize and analyze the machine learning algorithms applied in the field of urodynamics. The purpose of this review is to summarize and classify the machine learning algorithms applied in this field and to guide researchers to select the appropriate algorithm model for different task requirements to achieve the best results.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nau.25490DOI Listing

Publication Analysis

Top Keywords

machine learning
32
applied field
16
learning urodynamics
12
learning algorithms
12
field urodynamics
12
learning
10
applications machine
8
narrative review
8
learning deep
8
deep learning
8

Similar Publications

Human-induced global warming, primarily attributed to the rise in atmospheric CO, poses a substantial risk to the survival of humanity. While most research focuses on predicting annual CO emissions, which are crucial for setting long-term emission mitigation targets, the precise prediction of daily CO emissions is equally vital for setting short-term targets. This study examines the performance of 14 models in predicting daily CO emissions data from 1/1/2022 to 30/9/2023 across the top four polluting regions (China, India, the USA, and the EU27&UK).

View Article and Find Full Text PDF

The present study analyzed the impact of age on the causes of death (CODs) in patients with nasopharyngeal carcinoma (NPC) undergoing chemoradiotherapy (CRT) using machine learning approaches. A total of 2841 patients (1037 classified as older, ≥ 60 years and 1804 as younger, < 60 years) were enrolled. Variations in the CODs between the two age groups were analyzed before and after applying inverse probability of treatment weighting (IPTW).

View Article and Find Full Text PDF

Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information.

View Article and Find Full Text PDF

Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.

View Article and Find Full Text PDF

Machine Learning-enhanced X-ray-based Radiomics in the Identification of Post-COVID Patients.

Arch Bronconeumol

December 2024

National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!