QSAR studies on the number of compounds tested as S. aureus inhibitors were performed using an interactive Online Chemical Database and Modeling Environment (OCHEM) web platform. The predictive ability of the developed consensus QSAR model was q=0.79±0.02. The consensus prediction for the external evaluation set afforded high predictive power (q=0.82±0.03). The models were applied to screen a virtual chemical library with anti-S. aureus activity. Six promising new bicyclic trifluoromethylated pyrroles were identified, synthesized and evaluated in vitro against S. aureus, E. coli, and A. baumannii for their antibacterial activity and against C. albicans, C. krusei and C. glabrata for their antifungal activity. The synthesized compounds were characterized by H, F, and C NMR and elemental analysis. The antimicrobial activity assessment indicated that trifluoromethylated pyrroles 9 and 11 demonstrated the greatest antibacterial and antifungal effects against all the tested pathogens, especially against multidrug-resistant strains. The acute toxicity of the compounds to Daphnia magna ranged from 1.21 to 33.39 mg/L (moderately and slightly toxic). Based on the docking results, it can be suggested that the antibacterial and antifungal effects of the compounds can be explained by the inhibition of bacterial wall component synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202400638DOI Listing

Publication Analysis

Top Keywords

trifluoromethylated pyrroles
12
antibacterial antifungal
12
bicyclic trifluoromethylated
8
antifungal effects
8
silico design
4
design vitro
4
vitro assessment
4
assessment bicyclic
4
antibacterial
4
pyrroles antibacterial
4

Similar Publications

A visible-light-induced cascade radical trifluoromethylation/cyclization/dearomatization reaction between isocyanide-containing indoles and CFBr has been developed to afford trifluoromethylated spiro[indole-3,3-quinoline] and spiro [indole-3,3-pyrrole] derivatives in good yields. The utility of the process is demonstrated by a scale-up experiment. The mechanism was proposed based on the control experiments.

View Article and Find Full Text PDF

Heterocycle skeletal editing has recently emerged as a powerful tactic for achieving heterocycle-to-heterocycle transmutation without the need for multistep de novo heterocycle synthesis. However, the enantioselective skeletal editing of heteroarenes through single-atom logic remains challenging. Here we report the enantiodivergent dearomative skeletal editing of indoles and pyrroles via an asymmetric carbon-atom insertion, using trifluoromethyl N-triftosylhydrazones as carbene precursors.

View Article and Find Full Text PDF

3,3,3-Trifluoro-1,2-propanediol undergoes complete defluorination in two distinct steps: first, the conversion into 3,3,3-trifluoropropionaldehyde catalyzed by adenosylcobalamin (coenzyme B12)-dependent diol dehydratase; second, non-enzymatic elimination of all three fluorides from this aldehyde to afford malonic semialdehyde (3-oxopropanoic acid), which is decarboxylated to acetaldehyde. Diol dehydratase accepts 3,3,3-trifluoro-1,2-propanediol as a relatively poor substrate, albeit without significant mechanism-based inactivation of the enzyme during catalysis. Optical and electron paramagnetic resonance (EPR) spectra revealed the steady-state formation of cob(II)alamin and a substrate-derived intermediate organic radical (3,3,3-trifluoro-1,2-dihydroxyprop-1-yl).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on designing and synthesizing a new series of 4-(trifluoromethyl)isoxazoles and testing their effectiveness as anti-cancer agents against specific cancer cell lines (MCF-7, 4T1, and PC-3).
  • A new metal-free synthetic method was developed to create these challenging molecules using easily available ingredients, overcoming past limitations in synthesis.
  • Among the synthesized compounds, one molecule (2g) showed superior anti-cancer activity, being significantly more effective than its non-trifluoromethylated counterpart, indicating that the trifluoromethyl group is crucial for enhancing cancer-fighting properties.
View Article and Find Full Text PDF

QSAR studies on the number of compounds tested as S. aureus inhibitors were performed using an interactive Online Chemical Database and Modeling Environment (OCHEM) web platform. The predictive ability of the developed consensus QSAR model was q=0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!