Calculated potential energy structures and landscapes are very often used to define the sequence of reaction steps in an organometallic reaction mechanism and interpret kinetic isotope effect (KIE) measurements. Underlying most of this structure-to-mechanism translation is the use of statistical rate theories without consideration of atomic/molecular motion. Here we report direct dynamics simulations for an organometallic benzene reductive elimination reaction, where nonstatistical intermediates and dynamic-controlled pathways were identified. Specifically, we report single spin state as well as mixed spin state quasiclassical direct dynamics trajectories in the gas phase and explicit solvent for benzene reductive elimination from Mo and W bridged cyclopentadienyl phenyl hydride complexes ([MeSi(CMe)]M(H)(Ph), M = Mo and W). Different from the energy landscape mechanistic sequence, the dynamics trajectories revealed that after the benzene C-H bond forming transition state (often called reductive coupling), σ-coordination and π-coordination intermediates are either skipped or circumvented and that there is a direct pathway to forming a spin flipped solvent caged intermediate, which occurs in just a few hundred femtoseconds. Classical molecular dynamics simulations were then used to estimate the lifetime of the caged intermediate, which is between 200 and 400 picoseconds. This indicates that when the η-π-coordination intermediate is formed, it occurs only after the first formation of the solvent-caged intermediate. This dynamic mechanism intriguingly suggests the possibility that the solvent-caged intermediate rather than a coordination intermediate is responsible (or partially responsible) for the inverse KIE value experimentally measured for W. Additionally, this dynamic mechanism prompted us to calculate the / KIE value for the C-H bonding forming transition states of Mo and W. Surprisingly, Mo gave a normal value, while W gave an inverse value, albeit small, due to a much later transition state position.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c01788 | DOI Listing |
Polymers (Basel)
January 2025
Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia.
Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood.
View Article and Find Full Text PDFLangmuir
January 2025
CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Molds are persistent and harmful but receive far less research attention compared with pathogenic bacteria. With the increase in microbial resistance to single-chain surfactant antimicrobial agents, it is crucial to investigate how surfactant structures affect the antimicrobial activity of surfactants. Here, we have studied the antimold efficacy of a series of oligomeric cationic quaternary ammonium surfactants at varying oligomerization levels with or without dynamic covalent imine bonds.
View Article and Find Full Text PDFChemistry
January 2025
The University of Electro-Communications: Denki Tsushin Daigaku, Department of Engineering Science, JAPAN.
(6,5)-enriched single-walled carbon nanotubes (SWCNTs) were reductively arylated using sodium naphthalenide and monosubstituted and disubstituted iodobenzene derivatives to control their photoluminescence (PL) properties. In the reactions with substituted iodobenzenes, the degree of functionalization was influenced by the substituents on the aryl groups depending on their position, which allowed us to realize control of the PL intensity. The substituents at the 2-position and methyl groups at the 3,5-positions of the phenyl group respectively increased the E11** PL and E11* PL selectivity at ~1230 and ~1100 nm.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:
The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.
View Article and Find Full Text PDFNat Chem
January 2025
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.
Benzene reduction by molecular complexes remains an important synthetic challenge, requiring harsh reaction conditions involving group I metals. Reductions of benzene, to date, typically result in a loss of aromaticity, although the benzene tetra-anion, a 10π-electron system, has been calculated to be stable and aromatic. Due to the lack of sufficiently potent reductants, four-electron reduction of benzene usually requires the use of group I metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!