Local dynamics and failure of inhomogeneous polymer networks.

Soft Matter

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Published: June 2024

Inhomogeneous crosslinked polymers are powerful platforms for materials design, because they can be synthesized from materials that provide complimentary properties to the resulting gel. For example, a membrane with both glassy and rubbery domains will be mechanically robust while enabling transport. The dynamics, and mechanical and failure properties of rubbery/glassy conetworks are only beginning to be studied, and there is likely to be strong heterogeneities in the dynamics and mechanical response. In this study, we use coarse-grained molecular dynamics simulations to generate microphase separated rubbery/glassy polymer networks with a bicontinuous morphology crosslinking. We study the effect of phase boundary on the local mobility gradient, and our simulation results reveal an asymmetric shift in the local mobility gradient across the interface that extends deeper into the phase with a lower when the system temperature is between the glass transition temperatures of the two phases. Moreover, by employing a model that allows bond breaking, we examine the microscopic mechanism for failure in these networks as a function of the molecular weight of polymer strands between crosslinks and the number fraction of the glassy domain. Under uniaxial extension, we find that the stress is initially larger in the glassy domain. As the deformation proceeds, the segmental dynamics of the two phases homogenize, and subsequently bond breaking begins.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm00087kDOI Listing

Publication Analysis

Top Keywords

polymer networks
8
dynamics mechanical
8
local mobility
8
mobility gradient
8
bond breaking
8
glassy domain
8
local dynamics
4
dynamics failure
4
failure inhomogeneous
4
inhomogeneous polymer
4

Similar Publications

Thermally Triggered Double Emulsion-Integrated Hydrogel Microparticles for Multiplexed Molecular Diagnostics.

Adv Sci (Weinh)

January 2025

Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.

During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.

View Article and Find Full Text PDF

Simulating large molecular systems over long timescales requires force fields that are both accurate and efficient. In recent years, E(3) equivariant neural networks have lifted the tension between computational efficiency and accuracy of force fields, but they are still several orders of magnitude more expensive than established molecular mechanics (MM) force fields. Here, we propose Grappa, a machine learning framework to predict MM parameters from the molecular graph, employing a graph attentional neural network and a transformer with symmetry-preserving positional encoding.

View Article and Find Full Text PDF

In-Situ Formation of Three-Dimensional Network Intrinsic Microporous Ladder Polymer Membranes with Ultra-High Gas Separation Performance and Anti-Trade-Off Effect.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.

The global quest for clean energy and sustainable processes makes advanced membrane extremely attractive for energy-intensive industrial gas separations. Here, we disclosed a series of ultra-high-performance gas separation membranes (PIM-3D-TB) from novel network polymers of intrinsic microporosity (PIM) that combine the advantages of solution processible PIM and small pore size distribution (PSD) of porous organic polymers (POP), which was synthesized by in situ copolymerization of triptycene-2,6-diamine as linear part and triptycene-2,6,13(14)-triamine (TTA) as crosslinker. The resulting PIM-3D-TB membranes demonstrated outstanding separation properties that outperformed the latest trade-off lines for H/CH and O/N.

View Article and Find Full Text PDF

In vivo Differential Effects of Extractable and Non-Extractable Phenolic Compounds from Grape Pomace on the Regulation of Obesity and Associated Metabolic Alterations.

Plant Foods Hum Nutr

January 2025

Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, México.

Grape pomace (GP) is a by-product rich in phytochemicals, including extractable polyphenols (EPPs) and non-extractable polyphenols (NEPPs), which have distinct metabolic fates that may affect their biological activities. The benefits of GP have been reported in relation to obesity and its comorbidities, particularly when administered preventively focusing on EPPs. Therefore, the aim of this study was to investigate the effects of EPPs and NEPPs from GP as a treatment for obesity and its associated metabolic alterations.

View Article and Find Full Text PDF

Iminophosphoranes with the general formula (RP═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!