Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Light-matter strong coupling (LMSC) is an intriguing state in which light and matter are hybridized inside a cavity. It is increasingly recognized as an excellent way to control material properties without any chemical modification. Here, we show that the LMSC is a powerful state for manipulating chiral nonlinear optical (NLO) effects through the investigation of second harmonic generation (SHG) circular dichroism. At the upper polariton band in LMSC, in addition to the enhancement of SHG by more than 1 order of magnitude, the responsivity to the handedness of circularly polarized light was largely modified, where sign inversion and increase of the dissymmetry factor were achieved. Quarter waveplate rotation analysis revealed that the LMSC clearly influenced the coefficients associated with chirality in the NLO process and also contributed to the enhancement of nonlinear magnetic dipole interactions. This study demonstrated that LMSC serves as a great platform for controlling chiral and magneto-optics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c01707 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!