The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO NPs, either alone or in a mixture, utilizing zebrafish () as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287394.2024.2362809DOI Listing

Publication Analysis

Top Keywords

tio nps
28
1000 ng/l
16
nps mixture
12
bp-3 levels
12
bp-3
11
filters benzophenone-3
8
tio
8
nps
8
aquatic environment
8
bp-3 tio
8

Similar Publications

The rising production and improper disposal of titanium dioxide nanoparticles (TiO NPs) into aquatic systems present considerable environmental challenges, especially when these particles interact with other contaminants such as cadmium (Cd). Thus, the current study aimed to evaluate the potential toxic effects on the gills, chondrocranium, body growth, and mortality of Aquarana catesbeiana tadpoles. The tadpoles were exposed to environmentally relevant concentrations of TiO NPs (10 µg L), and CdCl (10 µg L), both individually and in combination, for 30 days (chronic exposure), along with a control group.

View Article and Find Full Text PDF

TiO-sodium alginate core-shell nanosystem for higher antimicrobial wound healing application.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.

Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.

View Article and Find Full Text PDF

Enhancing the CO Oxidation Performance of Copper by Alloying with Immiscible Tantalum.

ACS Appl Mater Interfaces

January 2025

School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Copper-tantalum (Cu-Ta) immiscible alloy nanoparticles (NPs) have been the subject of extensive research in the field of structural materials, due to their exceptional nanostructural stability and high-temperature creep properties. However, Cu is also a highly active oxidation catalyst due to its abundant valence changes. In this study, we have for the first time obtained homogeneous CuTa ( = 0.

View Article and Find Full Text PDF

The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!