AI Article Synopsis

  • HIV affects around 40 million people globally, with most receiving antiretroviral therapy that doesn't effectively reach the central nervous system, leading to persistent viral reservoirs and chronic neuroinflammation linked to cognitive and mood disorders known as HAND.
  • Cannabinoid therapies are limited by their psychoactive effects, but the study investigated the potential of a monoacylglycerol lipase (MAGL) inhibitor (MJN110) to alleviate neuroinflammation and protect against brain damage caused by HIV-related proteins in a mouse model.
  • While no significant changes in behavior were noted in the mice, treatment with MJN110 showed promise by increasing the intensity of a protective protein in certain brain areas, suggesting a potential

Article Abstract

Background: Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system.

Methods: The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators.

Results: No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1 microglia density and/or microglia morphology. Further, Tat increased GFAP astrocyte density in the infralimbic cortex and GFAP astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment.

Conclusions: These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148243PMC
http://dx.doi.org/10.3389/fimmu.2024.1374301DOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
12
therapeutic potential
8
dendritic injury
8
map2ab intensity
8
microglia density
8
microglia morphology
8
astrocyte density
8
il-1ß colocalization
8
infralimbic cortex
8
mjn110
5

Similar Publications

The nucleus accumbens-associated protein-1 (NAC1) has recently emerged as a pivotal factor in oncogenesis by promoting glycolysis. Deletion of NAC1 in regulatory T cells (Tregs) has been shown to enhance FoxP3 stability, a suppressor of glycolysis. This study delves into the intriguing dual role of NAC1, uncovering that Tregs-specific deletion of NAC1 fosters metabolic fitness in Tregs, thereby promoting tumorigenesis.

View Article and Find Full Text PDF

Malignant tumors are a leading cause of death worldwide, second only to cardiovascular disease. They occur in every population and have a high risk of mortality. The etiopathogenesis of malignant tumors is diverse and there are still many unknowns, leading to huge diagnostic and therapeutic challenges.

View Article and Find Full Text PDF

Sex differences in dorsal striatal volume and interest in quitting smoking.

Drug Alcohol Depend

December 2024

Department of Psychology, The Pennsylvania State University,  University Park, PA, USA.

Aims: Over the recent decades, smoking among women has become an increasingly pressing public health challenge. Mounting evidence suggests that, compared to men, women's smoking is more strongly influenced by habitual responses to sensorimotor cues. To understand the brain mechanisms underlying the cessation challenges commonly reported by women who smoke, the present study used voxel-based morphometry (VBM) to investigate sex-related volumetric differences in the dorsal striatum, a region implicated in habitual substance use behavior, and their associations with self-reported quit interest among daily smoking adults.

View Article and Find Full Text PDF

The neurotransmitter acetylcholine (ACh) is essential in both the central and peripheral nervous systems. Recent studies highlight the significance of interactions between ACh and various neuromodulators in regulating complex behaviors. The ability to simultaneously image ACh and other neuromodulators can provide valuable information regarding the mechanisms underlying these behaviors.

View Article and Find Full Text PDF

Glucagon-like peptide-1 receptor agonists (GLP1RAs) effectively reduce body weight and improve metabolic outcomes, yet established peptide-based therapies require injections and complex manufacturing. Small-molecule GLP1RAs promise oral bioavailability and scalable manufacturing, but their selective binding to human versus rodent receptors has limited mechanistic studies. The neural circuits through which these emerging therapeutics modulate feeding behavior remain undefined, particularly in comparison to established peptide-based GLP1RAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!