Cellular models and therapeutic perspectives in hypertrophic cardiomyopathy.

Med Genet

Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany.

Published: September 2021

Hypertrophic cardiomyopathy (HCM) is a clinically heterogeneous cardiac disease that is mainly characterized by left ventricular hypertrophy in the absence of any additional cardiac or systemic disease. HCM is genetically heterogeneous, inherited mainly in an autosomal dominant pattern, and so far pathogenic variants have been identified in more than 20 genes, mostly encoding proteins of the cardiac sarcomere. Based on its variable penetrance and expressivity, pathogenicity of newly identified variants often remains unsolved, underlining the importance of cellular and tissue-based models that help to uncover causative genetic alterations and, additionally, provide appropriate systems for the analysis of disease hallmarks as well as for the design and application of new therapeutic strategies like drug screenings and genome/base editing approaches. Here, we review the current state of cellular and tissue-engineered models and provide future perspectives for personalized therapeutic strategies of HCM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006313PMC
http://dx.doi.org/10.1515/medgen-2021-2094DOI Listing

Publication Analysis

Top Keywords

hypertrophic cardiomyopathy
8
therapeutic strategies
8
cellular models
4
models therapeutic
4
therapeutic perspectives
4
perspectives hypertrophic
4
cardiomyopathy hypertrophic
4
cardiomyopathy hcm
4
hcm clinically
4
clinically heterogeneous
4

Similar Publications

Aims: How the underlying etiology and pathophysiology of left ventricular (LV) hypertrophy affects LA remodeling and function remains unexplored. The present study aims to investigate the influence of various hypertrophic phenotypes on LA remodeling and function.

Methods And Results: Patients with LV hypertrophy who underwent cardiac magnetic resonance (CMR) were compared to a control group.

View Article and Find Full Text PDF

Sudden cardiac death is a leading cause of mortality in children with hypertrophic cardiomyopathy (HCM). The PRecIsion Medicine in CardiomYopathy consortium developed a validated tool (PRIMaCY) for sudden cardiac death risk prediction to help with implantable cardioverter defibrillator shared decision-making, as recommended by clinical practice guidelines. The mplemeting a udden Cardiac Dath isk Assessment ool in hildhood (INSERT-HCM) study aims to implement PRIMaCY into electronic health records (EHRs) and assess implementation determinants and outcomes.

View Article and Find Full Text PDF

Mavacamten is a cardiac myosin inhibitor for adults with obstructive hypertrophic cardiomyopathy (HCM). Dose optimization is performed 4 weeks after starting mavacamten, guided by periodic echo measurements of Valsalva left ventricular outflow tract gradient (VLVOTg) and left ventricular ejection fraction (LVEF). Previously, a population pharmacokinetic (PPK) model was developed and exposure-response (E-R) of VLVOTg (efficacy) and LVEF (safety) was used to identify the mavacamten titration regimen with the optimal benefit/risk ratio, now included in the US prescribing information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!