A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensing Volatile Pollutants with Spin-Coated Films Made of Pillar[5]arene Derivatives and Data Validation via Artificial Neural Networks. | LitMetric

Different types of solvents, aromatic and aliphatic, are used in many industrial sectors, and long-term exposure to these solvents can lead to many occupational diseases. Therefore, it is of great importance to detect volatile organic compounds (VOCs) using economic and ergonomic techniques. In this study, two macromolecules based on pillar[5]arene, named and , were synthesized and applied to the detection of six different environmentally volatile pollutants in industry and laboratories. The thin films of the synthesized macrocycles were coated by using the spin coating technique on a suitable substrate under optimum conditions. All compounds and the prepared thin film surfaces were characterized by NMR, Fourier transform infrared (FT-IR), elemental analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle measurements. All vapor sensing measurements were performed via the surface plasmon resonance (SPR) optical technique, and the responses of the and thin-film sensors were calculated with Δ/ × 100. The responses of the and thin-film sensors to dichloromethane vapor were determined to be 7.17 and 4.11, respectively, while the responses to chloroform vapor were calculated to be 5.24 and 2.8, respectively. As a result, these thin-film sensors showed a higher response to dichloromethane and chloroform vapors than to other harmful vapors. The SPR kinetic data for vapors validated that a nonlinear autoregressive neural network was performed with exogenous input for the best molecular modeling by using normalized reflected light intensity values. It can be clearly seen from the correlation coefficient values that the nonlinear autoregressive with exogenous input artificial neural network (NARX-ANN) model for dichloromethane converged more successfully to the experimental data compared to other gases. The correlation coefficient values of the dichloromethane modeling results were approximately 0.99 and 0.98 for and thin-film sensors, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194768PMC
http://dx.doi.org/10.1021/acsami.4c06970DOI Listing

Publication Analysis

Top Keywords

thin-film sensors
16
volatile pollutants
8
artificial neural
8
responses thin-film
8
nonlinear autoregressive
8
neural network
8
exogenous input
8
correlation coefficient
8
coefficient values
8
sensing volatile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!