Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Large and rapid lithium storage is hugely demanded for high-energy/power lithium-ion batteries; however, it is difficult to achieve these two indicators simultaneously. Sn-based materials with a (de)alloying mechanism show low working potential and high theoretical capacity, but the huge volume expansion and particle agglomeration of Sn restrict cyclic stability and rate capability. Herein, a soft-in-rigid concept was proposed and achieved by chemical scissoring where a soft Sn-S bond was chosen as chemical tailor to break the Ti-S bond to obtain a loose stacking structure of 1D chain-like SnTiS. The in situ and ex situ (micro)structural characterizations demonstrate that the Sn-S bonds are reduced into Sn domains and such Sn disperses in the rigid Ti-S framework, thus relieving the volume expansion and particle agglomeration by chemical and physical shielding. Benefiting from the merits of large-capacity Sn with an alloying mechanism and high-rate TiS with an intercalation mechanism, the SnTiS anode offers a high specific capacity of 963.2 mA h g at 0.1 A g after 100 cycles and a reversible capacity of 250 mA h g at 10 A g after 3900 cycles. Such a strategy realized by chemical tailoring at the structural unit level would broaden the prospects for constructing joint high-capacity and high-rate LIB anodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c01493 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!