In this work, a novel procedure for immobilization of phosphomolybdic acid (PMA) on Magnetic polycalix[4]resorcinarene grafted to chitosan by EDTA (calix-EDTA-Cs) was reported. The heterogeneous nanocomposite (CoFeO@calix-EDTA-Cs@PMA) was applied an acid nanocatalyst for the synthesis of 5-aroyl-NH-1,3-oxazolidine-2-ones through the reaction of α-epoxyketones with sodium cyanate (NaOCN) in polyethylene glycol (PEG) as a green solvent under ultrasonic irradiation conditions. Some features of this work include quick reaction time, high reaction yield, easy separation of the catalyst, thermal stability, and eco-friendly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150257PMC
http://dx.doi.org/10.1038/s41598-024-63493-yDOI Listing

Publication Analysis

Top Keywords

phosphomolybdic acid
8
synthesis 5-aroyl-nh-13-oxazolidine-2-ones
8
acid supported
4
supported magnetic
4
magnetic poly
4
poly calix[4]resorcinarene-edta-chitosan
4
calix[4]resorcinarene-edta-chitosan network
4
network recyclable
4
recyclable catalyst
4
catalyst synthesis
4

Similar Publications

Protective Properties of Silane Composite Coatings Modified with Poly(3,4-ethylenedioxythiophene) with Heteropolyacid on X20Cr13 and 41Cr4 Steel.

Materials (Basel)

December 2024

Department of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Aleja Armii Krajowej 19, 42-200 Czestochowa, Poland.

This paper describes the methodology of the preparation and analyses of the structure and anticorrosion properties of silane coatings modified with poly(3,4-ethylenedioxythiophene) (PEDOT) with phosphododecamolybdic acid (PMo). Protective coatings, consisting of vinyltrimethoxysilane (VTMS), PEDOT powder with PMo admixture (at different concentrations), and ethanol, were deposited on X20Cr13 and 41Cr4 steels by immersion. The physicochemical properties of these silane coatings (e.

View Article and Find Full Text PDF

1D CoMoC-Based Heterojunctional Nanowires from Pyrolytically "Squeezing" PMo/ZIF-67 Cubes for Efficient Overall Water Electrolysis.

Small

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Xuefu Road, Harbin, 150080, P. R. China.

The bi-transition-metal interstitial compounds (BTMICs) are promising for water electrolysis. The previous BTMICs are usually composed of irregular particles. Here, this work shows the synthesis of novel 1D CoMoC-based heterojunction nanowires (1D Co/CoMoC) with diameters about 50 nm and a length-to-diameter ratio about 20 for efficient water electrolysis.

View Article and Find Full Text PDF

Inkless paper made from photochromic materials has garnered significant interest owing to its potential to reduce both ink and paper pollution during production. In this research, we synthesized a dual-material film (EC-PVP/PGMEA/PMoA) and conducted a detailed investigation of its photochromic response to visible light and its microstructural properties. Initially, the film appeared as a translucent yellow, but upon exposure to visible light, it shifted to blue with a maximum absorption peak of 2.

View Article and Find Full Text PDF

Exploring the association between serum magnesium level and autism spectrum disorder using validated spectrofluorimetric method.

Anal Biochem

April 2025

Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751, Nasr City, Cairo, Egypt. Electronic address:

Magnesium is an essential mineral in biological systems and has a significant impact on brain health. Its deficiency has been found to correlate with irregular metabolic processes and neurodevelopmental disorders. The objective of this research was to establish and validate an analytical approach based on the standard addition methodology for determining endogenous magnesium levels in the serum of autistic and healthy children.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers synthesized sub-1 nanometer CuO-PMA nanosheets that significantly boosted CL emissions over 1000 times when used with a luminol-HO system by generating more reactive oxygen species.
  • * This study led to the development of a highly sensitive CL sensor for quercetin detection with a strong linear relationship and low detection limit, providing a simple and cost-effective detection method.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!