Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three-dimensional (3D) glass chips are promising waveguide platforms for building hybrid 3D photonic circuits due to their 3D topological capabilities, large transparent windows, and low coupling dispersion. At present, the key challenge in scaling down a benchtop optical system to a glass chip is the lack of precise methods for controlling the mode field and optical coupling of 3D waveguide circuits. Here, we propose an overlap-controlled multi-scan (OCMS) method based on laser-direct lithography that allows customizing the refractive index profile of 3D waveguides with high spatial precision in a variety of glasses. On the basis of this method, we achieve variable mode-field distribution, robust and broadband coupling, and thereby demonstrate dispersionless LP-mode conversion of supercontinuum pulses with the largest deviation of <0.1 dB in coupling ratios on 210 nm broadband. This approach provides a route to achieve ultra-broadband and low-dispersion coupling in 3D photonic circuits, with overwhelming advantages over conventional planar waveguide-optic platforms for on-chip transmission and manipulation of ultrashort laser pulses and broadband supercontinuum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150431 | PMC |
http://dx.doi.org/10.1038/s41377-024-01473-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!