Background: Correcting of the lack of regularity in steps is a key component of gait rehabilitation in Parkinson's disease. We proposed to introduce adaptive spatial auditory cueing (ASAC) based on verbal instruction "lengthen the step" automatically delivered when the stride length decreased below a predetermined threshold.
Objectives: The present study compared the effect of usual rhythmic auditory cueing versus ASAC used during a walking training in Parkinson's disease.
Methods: Fifteen patients with Parkinson's disease performed both interventions in randomized order, one week apart: a 20-minute walking training with rhythmic auditory cueing, in form of a metronome adjusted on 110% of the patient's own cadence, or ASAC delivered when the stride length is less than 110% of the patient's own stride length. Assessment criteria were walking distance covered during the intervention, speed, step length, cadence, coefficients of variation of step length and step duration, and indexes of spatial and temporal asymmetry during a walking test before and just after the intervention.
Results: The walking distance is higher with ASAC compared with rhythmic auditory cueing (rhythmic auditory cueing, 905 (203) m, mean (standard deviation); ASAC, 1043 (212) m; P=0.002). Between-intervention comparison showed some similar effects on walking after the intervention including free speed and step length increases (P<0.05).
Conclusion: The distance covered during 20-minute walking with ASAC increases by 15% compared to the use of classical rhythmic auditory cueing, while the immediate therapeutic effects show similar spatial-temporal benefits on short-distance walking. Auditory biofeedback cueing promoting the increase in step length might improve gait relearning in Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurol.2024.05.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!