Background: Intravascular hemolysis is associated with massive release of hemoglobin and consequently labile heme into the blood, resulting in prothrombotic and proinflammatory events in patients. Though heme is well-known to participate in these adverse effects, it is not monitored. Instead, haptoglobin and hemoglobin serve as clinical biomarkers. The quantification of labile heme together with hemoglobin, however, should be considered in clinical diagnosis as well, to obtain a complete picture of the hemolytic state in patients. So far, quantification techniques for labile heme were not yet systematically analyzed and compared for their clinical application potential, especially in the presence of hemoglobin.
Results: Two commercial assays (Heme Assay Kit®, Hemin Assay Kit®) and five common approaches (pyridine hemochromogen assay, apo-horseradish peroxidase-based assay, UV/Vis spectroscopy, HPLC, mass spectrometry) were analyzed concerning their linearity, accuracy, and precision, as well as their ability to distinguish between hemoglobin-bound heme and labile heme. Further, techniques for the quantification of hemoglobin (Harboe method, SLS method, Hemastix®) were included to study their selectivity for hemoglobin and potential interference by the presence of labile heme. Both, indirect and direct approaches were suitable for the determination of a wide concentration of heme (∼0.02-45 μM) and hemoglobin (∼0.002-17 μM). A clear distinction between hemoglobin-bound heme and labile heme with one method was not possible. Thus, a novel combined approach is presented and applied to human and porcine plasma samples for the determination of hemoglobin and labile heme.
Significance: Our results demonstrate the need to develop improved techniques to differentiate labile and protein-bound heme for early detection of intravascular hemolysis. Here, we present a novel strategy by combining two spectroscopic methods, which is most reliable as an easy-to-use tool for the determination of hemoglobin and heme levels in plasma samples for the diagnosis of intravascular hemolysis and in basic biomedical research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625178 | PMC |
http://dx.doi.org/10.1016/j.aca.2024.342766 | DOI Listing |
Dalton Trans
December 2024
Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
Peroxynitrite (ONOO) is a highly reactive nitrogen species that can cause significant damage to proteins, lipids, and DNA. Various enzymes, including metalloenzymes, play crucial roles in reducing ONOO concentrations to protect cellular components. While the interaction of ONOO with heme proteins is well known, the reduction by Cu-containing proteins is less studied.
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada.
Anaerobilin synthase catalyzes the decyclization of the heme protoporphyrin ring, an O-independent reaction that liberates iron and produces the linear tetrapyrrole, anaerobilin. The marine bacterium , the enteric pathogen O157:H7, and the opportunistic oral pathogen encode anaerobilin synthase as part of their heme uptake/utilization operons, designated ( O157:H7), (), and (). and O157:H7 contain accessory proteins (ChuS, ChuY, and HmuF) encoded in their respective operons that mitigate against the cytotoxicity of labile heme and anaerobilin by functioning in heme trafficking and anaerobilin reduction.
View Article and Find Full Text PDFFront Cell Infect Microbiol
November 2024
Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany.
Host iron deficiency is protective against severe malaria as the human malaria parasite depends on bioavailable iron from its host to proliferate. The essential pathways of iron acquisition, storage, export, and detoxification in the parasite differ from those in humans, as orthologs of the mammalian transferrin receptor, ferritin, or ferroportin, and a functional heme oxygenase are absent in . Thus, the proteins involved in these processes may be excellent targets for therapeutic development, yet remain largely unknown.
View Article and Find Full Text PDFHematol Transfus Cell Ther
December 2024
Faculty of Medical Technology, Kobe Tokiwa University, Kobe, Hyōgo, Japan; Life Science Center, Kobe Tokiwa University, Kobe, Hyōgo, Japan.
Background: In transfusion-related iron overload, macrophage/reticuloendothelial cells are the first site of haem-derived iron accumulation. The prevention of haem-induced cytotoxicity in macrophages may represent a target for iron overload treatment. Deferasirox, an oral iron chelator, has been used to treat transfusion-related iron overload however, low adherence to the therapy is an issue.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112.
malaria parasites invade and multiply inside red blood cells (RBCs), the most iron-rich compartment in humans. Like all cells, requires nutritional iron to support essential metabolic pathways, but the critical mechanisms of iron acquisition and trafficking during RBC infection have remained obscure. Parasites internalize and liberate massive amounts of heme during large-scale digestion of RBC hemoglobin within an acidic food vacuole (FV) but lack a heme oxygenase to release porphyrin-bound iron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!