Background: Diabetes is a significant health threat, with its prevalence and burden increasing worldwide indicating its challenge for global healthcare management. To decrease the disease severity, the diabetic patients are recommended to regularly check their blood glucose levels. The conventional finger-pricking test possesses some drawbacks, including painfulness and infection risk. Nowadays, smartphone has become a part of our lives offering an important benefit in self-health monitoring. Thus, non-invasive wearable sweat glucose sensor connected with a smartphone readout is of interest for real-time glucose detection.
Results: Wearable sweat glucose sensing device is fabricated for self-monitoring of diabetes. This device is designed as a body strap consisting of a sensing strip and a portable potentiostat connected with a smartphone readout via Bluetooth. The sensing strip is modified by carbon nanotubes (CNTs)-cellulose nanofibers (CNFs), followed by electrodeposition of Prussian blue. To preserve the activity of glucose oxidase (GOx) immobilized on the modified sensing strip, chitosan is coated on the top layer of the electrode strip. Herein, machine learning is implemented to correlate between the electrochemical results and the nanomaterial content along with deposition cycle of prussian blue, which provide the highest current response signal. The optimized regression models provide an insight, establishing a robust framework for design of high-performance glucose sensor.
Significance: This wearable glucose sensing device connected with a smartphone readout offers a user-friendly platform for real-time sweat glucose monitoring. This device provides a linear range of 0.1-1.5 mM with a detection limit of 0.1 mM that is sufficient enough for distinguishing between normal and diabetes patient with a cut-off level of 0.3 mM. This platform might be an alternative tool for improving health management for diabetes patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.342761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!