A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of novel and potential inhibitors against the dengue virus NS2B/NS3 protease using virtual screening and biomolecular simulations. | LitMetric

AI Article Synopsis

  • - Approximately 3.9 billion people are at risk for dengue, a major tropical disease, and there are currently no drugs available for Flavivirus diseases like dengue, West Nile, or Zika.
  • - Researchers created a pharmacophore model based on a known NS2B-NS3 protease inhibitor to screen the NPASS database, resulting in 60 potential small molecules that may inhibit the dengue virus.
  • - The study found that some of these newly identified compounds showed strong binding affinities and interactions with the target protein, suggesting they could be promising candidates for further development as dengue virus inhibitors.

Article Abstract

Approximately 3.9 billion individuals are vulnerable to dengue infection, a prevalent cause of tropical diseases worldwide. Currently, no drugs are available for preventing or treating Flavivirus diseases, including Dengue, West Nile, and the more recent Zika virus. The highly conserved Flavivirus NS2B-NS3 protease, crucial for viral replication, is a promising therapeutic target. This study employed in-silico methodologies to identify novel and potentially effective anti-dengue small molecules. A pharmacophore model was constructed using an experimentally validated NS2B-NS3 inhibitor, with the Gunner Henry score confirming the model's validity. The Natural Product Activity and Species Source (NPASS) database was screened using the validated pharmacophore model, yielding a total of 60 hits against the NS2B-NS3 protease. Furthermore, the docking finding reveals that our newly identified compounds from the NPASS database have enhanced binding affinities and established significant interactions with allosteric residues of the target protein. MD simulation and post-MD analysis further validated this finding. The free binding energy was computed in terms of MM-GBSA analysis, with the total binding energy for compound 1 (-57.3 ± 2.8 and - 52.9 ± 1.9 replica 1 and 2) indicating a stronger binding affinity for the target protein. Overall, this computational study identified these compounds as potential hit molecules, and these findings can open up a new avenue to explore and develop inhibitors against Dengue virus infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132855DOI Listing

Publication Analysis

Top Keywords

inhibitors dengue
8
dengue virus
8
ns2b-ns3 protease
8
pharmacophore model
8
npass database
8
identified compounds
8
target protein
8
binding energy
8
identification novel
4
novel potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!