A review of etching methods and applications of two-dimensional MXenes.

Nanotechnology

School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China.

Published: July 2024

MXenes have been attracting much attention since their introduction due to their amazing properties such as unique structure, good hydrophilicity, metal-grade electrical conductivity, rich surface chemistry, low ionic diffusion resistance, and excellent mechanical strength. It is noteworthy that different synthesis methods have a great influence on the structure and properties of MXenes. In recent years, some modification strategies of MXenes with unique insights have been developed with the increasing research. In summary, this paper reviews and summarizes the recent research progress of MXenes from the perspective of preparation processes (including hydrofluoric acid direct etching, fluoride/concentrated acid hybrid etching, fluoride melt etching, electrochemical etching, alkali-assisted etching and Lewis acid etching strategies), which can provide valuable guidance for the preparation and application of high-performance MXenes-based materials.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad53d0DOI Listing

Publication Analysis

Top Keywords

etching
6
mxenes
5
review etching
4
etching methods
4
methods applications
4
applications two-dimensional
4
two-dimensional mxenes
4
mxenes mxenes
4
mxenes attracting
4
attracting attention
4

Similar Publications

Design optimization of a 1-D array of stemless plastic scintillation detectors.

Med Phys

January 2025

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.

View Article and Find Full Text PDF

Bioinspired surface structures for added shear stabilization in suction discs.

Sci Rep

January 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.

Many aquatic organisms utilize suction-based organs to adhere to diverse substrates in unpredictable environments. For multiple fish species, these adhesive discs include a softer disc margin consisting of surface structures called papillae, which stabilize and seal on variable substrates. The size, arrangement, and density of these papillae are quite diverse among different species, generating complex disc patterns produced by these structures.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

Objective: To investigate how surface treatment affects the color of enamel and dentin, and to evaluate whether the color differences are acceptable.

Materials And Methods: Freshly extracted premolars were prepared using diamond burs (blue, red, and yellow tapes). Tooth surfaces were divided into control and acid-etched areas and treated with phosphoric acid (5, 15, 30, 45, and 60 s).

View Article and Find Full Text PDF

Redefining the roles of alkali activators for porous carbon.

Chem Sci

December 2024

The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology Wuhan 430081 China.

Alkali activation is a common method to prepare commercial porous carbon. In a mixed alkali activation system, the role of each individual alkali has generally been assumed to be the same as in a single alkali activation system, and the low corrosiveness of weak alkalis has mainly been emphasized. However, the intrinsic roles of the individual alkalis should be understood in detail and redefined to illuminate the activation pathways from the perspective of internal chemical reactions rather than corrosiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!