In order to reduce the cardiotoxicity of doxorubicin (DOX) and improve its antitumor effect, dihydroartemisinin (DHA) and DOX prodrug (DOX-S-DHA) synthesized via a single sulfur bond was used with TEPP-46 to prepare nano-liposomes (DOX-S-DHA@TEPP-46 Lips). In which, TEPP-46 was expected to exert p53 bidirectional regulation to promote the synergistic antitumor effect of DOX and DHA while reducing cardiotoxicity. DOX-S-DHA@TEPP-46 Lips exhibited uniform particle size, good stability, and excellent redox-responsive activity. DOX-S-DHA@TEPP-46 Lips could significantly inhibit the proliferation of tumor cells, but had less cytotoxicity on normal cells. The presence of TEPP-46 increased the content of p53 protein, which further induced tumor cell apoptosis. DOX-S-DHA@TEPP-46 Lips had satisfactory long circulation to enhance the antitumor efficacy and reversed the cardiotoxicity of DOX in B16-F10 tumor-bearing mice. In conclusion, DOX-S-DHA@TEPP-46 Lips provides a new insight on creating sophisticated redox-sensitive nano-liposomes for cancer therapy as well as the decreased cardiotoxicity of DOX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.113992 | DOI Listing |
Colloids Surf B Biointerfaces
September 2024
School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
In order to reduce the cardiotoxicity of doxorubicin (DOX) and improve its antitumor effect, dihydroartemisinin (DHA) and DOX prodrug (DOX-S-DHA) synthesized via a single sulfur bond was used with TEPP-46 to prepare nano-liposomes (DOX-S-DHA@TEPP-46 Lips). In which, TEPP-46 was expected to exert p53 bidirectional regulation to promote the synergistic antitumor effect of DOX and DHA while reducing cardiotoxicity. DOX-S-DHA@TEPP-46 Lips exhibited uniform particle size, good stability, and excellent redox-responsive activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!