The depletion of fossil energy reserves and the environmental pollution caused by these sources highlight the need to harness renewable energy sources from the oceans, such as waves and tides, due to their high potential. On the other hand, the large-scale deployment of ocean energy converters to meet future energy needs requires the use of large farms of these converters, which may have negative environmental impacts on the ocean ecosystem. In the meantime, a very important point is the volume of data produced by different methods of collecting data from the ocean for their analysis, which makes the use of advanced tools such as different machine learning algorithms even more colorful. In this article, some environmental impacts of ocean energy devices have been analyzed using machine learning and quantum machine learning. The results show that quantum machine learning performs better than its classical counterpart in terms of calculation accuracy. This approach offers a promising new method for environmental impact assessment, especially in a complex environment such as the ocean.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.121275 | DOI Listing |
Brief Bioinform
November 2024
Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).
View Article and Find Full Text PDFAccurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.
View Article and Find Full Text PDFJMIR Med Educ
January 2025
Centre for Digital Transformation of Health, University of Melbourne, Carlton, Australia.
Background: Learning health systems (LHS) have the potential to use health data in real time through rapid and continuous cycles of data interrogation, implementing insights to practice, feedback, and practice change. However, there is a lack of an appropriately skilled interprofessional informatics workforce that can leverage knowledge to design innovative solutions. Therefore, there is a need to develop tailored professional development training in digital health, to foster skilled interprofessional learning communities in the health care workforce in Australia.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.
Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).
View Article and Find Full Text PDFFront Artif Intell
January 2025
Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Augusta, GA, United States.
Background: Large language models (LLMs) have demonstrated impressive performance on medical licensing and diagnosis-related exams. However, comparative evaluations to optimize LLM performance and ability in the domain of comprehensive medication management (CMM) are lacking. The purpose of this evaluation was to test various LLMs performance optimization strategies and performance on critical care pharmacotherapy questions used in the assessment of Doctor of Pharmacy students.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!