Regulating superstructures of conjugated polymers towards enhanced and stable photocatalytic hydrogen evolution via covalent crosslinking and complementary supramolecular self-assembly.

J Colloid Interface Sci

Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China. Electronic address:

Published: October 2024

The modulation of microstructures in conjugated polymers represents a viable strategy for enhancing photocatalytic efficiency, albeit hampered by complex processing techniques. Here, we present an uncomplicated, template-free method to synthesize polymeric photocatalysts, namely BCN(x)@PPy, featuring a hollow nanotube-nanocluster core-shell superstructure. This configuration is realized through intramolecular covalent crosslinking and synergistic intermolecular donor-acceptor (D-A) interactions between phenylene pyrene (PPy, D) nanotubes and poly([1,1'-biphenyl]-3-carbonitrile) (PBCN, A) nanoclusters. Interestingly, the optimized BCN2@PPy composite demonstrates remarkably enhanced performance for photocatalytic hydrogen evolution, with an efficiency of 14.7-fold higher than that of unmodified PPy nanotubes. Experimental and density functional theory calculations revealed that BCN(x)@PPy composites are conducive to shortening photogenerated exciton migration, facilitating charge separation and transfer, reducing nanoclusters aggregation or re-stacking, and providing sufficient catalytically active sites, all contributing to the heightened efficiency in photocatalysis. These insights underscore the potential for precise molecular adjustments in conjugated polymers, advancing artificial photosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.05.170DOI Listing

Publication Analysis

Top Keywords

conjugated polymers
12
photocatalytic hydrogen
8
hydrogen evolution
8
covalent crosslinking
8
ppy nanotubes
8
regulating superstructures
4
superstructures conjugated
4
polymers enhanced
4
enhanced stable
4
stable photocatalytic
4

Similar Publications

A Cu-salen-based conjugated microporous polymer catalyst for -formylation of CO under mild conditions.

Chem Commun (Camb)

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.

A heterogeneous salen-based conjugated microporous polymer catalyst (CMP@Cu-salen) is prepared by a one-pot method for -formylation of amines with CO. The uniformly dispersed Cu-salen site and porous structure facilitates the enrichment of CO and transfer of substrates and the transformation. Our CMP@Cu-salen shows excellent catalytic performance (conversion: 99%, selectivity: 90%) for formylation of -methylaniline under mild conditions (0.

View Article and Find Full Text PDF

Synthesis and Optoelectronic Characterizations of Conjugated Polymers Based on Diketopyrrolopyrrole and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile Via Knoevenagel Condensation.

Macromol Rapid Commun

January 2025

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.

View Article and Find Full Text PDF

Protection of Enzymes Against Heat Inactivation by Enzyme-Polymer Conjugates.

Macromol Rapid Commun

January 2025

State Key Lab of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.

Along with the quick advancements in enzyme technology, inactivation has emerged as the key barrier for enzymes to be fully utilized as biocatalysts. Here, a novel strategy is presented for the preservation of the enzymatic activity even after heat treatment by grafting enzymes onto the thermal responsive block copolymer via an activated ester-amine reaction. A new water-soluble activated ester monomer, acrylic polyethylene glycol (PEG) functionalized 3-fluoro-4-hydroxybenzoate is synthesized.

View Article and Find Full Text PDF

The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment.

View Article and Find Full Text PDF

Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!